Jump to Navigation

Main menu

  • Login
Home

Secondary menu

  • [Room Booking]
  • [Wiki]
  • [Webmail]

Alias-suppressed oscillators based on differentiated polynomial waveforms

Submitted by juhan on Wed, 05/12/2010 - 2:48pm
TitleAlias-suppressed oscillators based on differentiated polynomial waveforms
Publication TypeJournal Article
Year of Publication2010
AuthorsVälimäki, V., J. Nam, J. O. Smith III, and J. S. Abel
JournalIEEE Transactions on Audio, Speech and Language Processing
Volume18
Issue4
Start Page786
Date Published05/2010
ISSN1558-7916
Keywordsacoustic signal processing, Antialiasing, audio oscillators, music, signal synthesis
Abstract An efficient approach to the generation of classical synthesizer waveforms with reduced aliasing is proposed. This paper introduces two new classes of polynomial waveforms that can be differentiated one or more times to obtain an improved version of the sampled sawtooth and triangular signals. The differentiated polynomial waveforms (DPW) extend the previous differentiated parabolic wave method to higher polynomial orders, providing improved alias-suppression. Suitable polynomials of order higher than two can be derived either by analytically integrating a previous lower order polynomial or by solving the polynomial coefficients directly from a set of equations based on constraints. We also show how rectangular waveforms can be easily produced by differentiating a triangular signal. Bandlimited impulse trains can be obtained by differentiating the sawtooth or the rectangular signal. An objective evaluation using masking and hearing threshold models shows that a fourth-order DPW method is perceptually alias-free over the whole register of the grand piano. The proposed methods are applicable in digital implementations of subtractive sound synthesis.
URLhttp://www.ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5153306
DOI10.1109/TASL.2009.2026507
Full Text 
  • Tagged
  • XML
  • BibTex
  • Google Scholar
  • Home
  • News and Events
    • All Events
      • CCRMA Concerts
      • Colloquium Series
      • DSP Seminars
      • Hearing Seminars
      • Guest Lectures
    • Event Calendar
    • Events Mailing List
    • Recent News
  • Academics
    • Courses
    • Current Year Course Schedule
    • Undergraduate
    • Masters
    • PhD Program
    • Visiting Scholar
    • Visiting Student Researcher
    • Workshops 2023
  • Research
    • Publications
      • Authors
      • Keywords
      • STAN-M
      • Max Mathews Portrait
    • Research Groups
    • Software
  • People
    • Faculty and Staff
    • Students
    • Alumni
    • All Users
  • User Guides
    • New Documentation
    • Booking Events
    • Common Areas
    • Rooms
    • System
  • Resources
    • Planet CCRMA
    • MARL
  • Blogs
  • Opportunities
    • CFPs
  • About
    • The Knoll
      • Renovation
    • Directions
    • Contact

Search this site:

Fall Courses at CCRMA

Music 101 Introduction to Creating Electronic Sounds
Music 192A Foundations in Sound Recording Technology
Music 201 CCRMA Colloquium
Music 220A Foundations of Computer-Generated Sound
Music 223A Composing Electronic Sound Poetry
Music 256A Music, Computing, and Design I: Software Paradigms for Computer Music
Music 319 Research Seminar on Computational Models of Sound Perception
Music 320 Introduction to Audio Signal Processing
Music 351A Research Seminar in Music Perception and Cognition I
Music 423 Graduate Research in Music Technology
Music 451A Auditory EEG Research I

 

 

 

   

CCRMA
Department of Music
Stanford University
Stanford, CA 94305-8180 USA
tel: (650) 723-4971
fax: (650) 723-8468
info@ccrma.stanford.edu

 
Stanford Digital Accessibility
Web Issues: webteam@ccrma
site copyright © 2009-2023
Stanford University

site design: 
Linnea A. Williams