Jump to Navigation

Main menu

  • Login
Home

Secondary menu

  • [Room Booking]
  • [Wiki]
  • [Webmail]

Kurt James Werner's Dissertation Defense: Virtual Analog Modeling Using Wave Digital Filters

Date: 
Thu, 11/10/2016 - 3:30pm - 5:30pm
Location: 
CCRMA Stage
Event Type: 
Guest Lecture

Jimi Hendrix. Keith Emerson. Wendy Carlos. Jeff Mills. The Beastie Boys. Aphex Twin. What do these artists have in common? Their signature sounds feature vintage audio circuits including fuzz boxes, Moog synths, analog drum machines, etc.

In this dissertation defense, Kurt James Werner will present theoretical contributions to topological and nonlinear aspects of Wave Digital Filter theory, advancing the state of the art of virtual analog circuit modeling of classic audio gear. Throughout, the legendary bass drum circuit from the TR-808 Rhythm Composer will serve as a case study, demonstrating the theoretical advances in action.

(don't worry, we've patched in the gigantic QSC subwoofer)

Offical abstract follows.


The Wave Digital Filter (WDF) approach to discretizing electronic circuits has generated substantial interest in the virtual analog research community, which is attracted to the potential for systematic and modular simulation of vintage electronic musical instruments (e.g., synthesizers, drum machines) and audio effects (e.g., guitar amplifiers, distortion pedals). Unfortunately, traditional WDF techniques falter at the complexity of typical audio circuits, which contain complicated (non-series/parallel) topologies and multiple nonlinear devices (e.g., diodes, transistors, triodes). In this dissertation, I review classical WDF techniques and propose novel ways of systematically modeling circuits with complicated topologies and multiple nonlinearities. Throughout, the classic Bass Drum circuit from the Roland TR-808 serves as a motivating example and each of the four chapters contains a case study simulating a different one of its subcircuits.

The first two chapters consider linear reference circuits. After deriving the standard WDF building blocks and demonstrating their use in a simulation of the TR-808 Bass Drum's output filter, I explain their substantial limitations in the context of modeling analog audio circuitry. To overcome these limitations, I introduce a novel Modified-Nodal-Analysis-based approach to creating WDFs from circuits with complicated (non-series/parallel) topologies and show it in action on several versions of the Bass Drum's central circuit (the Bridged-T Resonator).

The next two chapters consider nonlinear reference circuits. I review the standard WDF technique for handling reference circuits with a single one-port nonlinear device, exemplified by a model of the TR-808 Bass Drum's Pulse Shaper subcircuit. In order to overcome the limitation to a single nonlinearity, I propose a novel approach that accommodates multiple nonlinearities and apply it towards simulations of the Bass Drum's Envelope Generator and a full nonlinear version of the Bridged-T Resonator.

Together, these four case studies form a complete model of the TR-808 Bass Drum that almost exactly matches the behavior of the real circuit, demonstrating the utility of the classical WDF techniques combined with my proposed methods. Beyond this case study, the proposed methods enable the simulation of a huge class of audio circuitry that was previously beyond the scope of WDF modeling.

FREE
Open to the Public
  • Calendar
  • Home
  • News and Events
    • All Events
      • CCRMA Concerts
      • Colloquium Series
      • DSP Seminars
      • Hearing Seminars
      • Guest Lectures
    • Event Calendar
    • Events Mailing List
    • Recent News
  • Academics
    • Courses
    • Current Year Course Schedule
    • Undergraduate
    • Masters
    • PhD Program
    • Visiting Scholar
    • Visiting Student Researcher
    • Workshops 2022
  • Research
    • Publications
      • Authors
      • Keywords
      • STAN-M
      • Max Mathews Portrait
    • Research Groups
    • Software
  • People
    • Faculty and Staff
    • Students
    • Alumni
    • All Users
  • User Guides
    • New Documentation
    • Booking Events
    • Common Areas
    • Rooms
    • System
  • Resources
    • Planet CCRMA
    • MARL
  • Blogs
  • Opportunities
    • CFPs
  • About
    • The Knoll
      • Renovation
    • Directions
    • Contact

Search this site:

Winter Quarter 2023

101 Introduction to Creating Electronic Sound
158/258D Musical Acoustics
220B Compositional Algorithms, Psychoacoustics, and Computational Music
222 Sound in Space
250C Interaction - Intermedia - Immersion
251 Psychophysics and Music Cognition
253 Symbolic Musical Information
264 Musical Engagement
285 Intermedia Lab
319 Research Seminar on Computational Models of Sound
320B Introduction to Audio Signal Processing Part II: Digital Filters
356 Music and AI
422 Perceptual Audio Coding
451B Neuroscience of Auditory Perception and Music Cognition II: Neural Oscillations

 

 

 

   

CCRMA
Department of Music
Stanford University
Stanford, CA 94305-8180 USA
tel: (650) 723-4971
fax: (650) 723-8468
info@ccrma.stanford.edu

 
Web Issues: webteam@ccrma

site copyright © 2009 
Stanford University

site design: 
Linnea A. Williams