Jump to Navigation

Main menu

  • Login
Home

Secondary menu

  • [Room Booking]
  • [Wiki]
  • [Webmail]

Simulating an Asymmetrically Saturated Nonlinearity Using an LNLNL Cascade

Submitted by keunsup on Thu, 12/13/2012 - 7:31am
TitleSimulating an Asymmetrically Saturated Nonlinearity Using an LNLNL Cascade
Publication TypeConference Paper
Year of Publication2012
AuthorsLee, K. S., and J. S. Abel
Conference Name133rd Audio Engineering Society Convention
Date Published10/2012
Conference LocationSan Francisco, CA, USA
AbstractThe modeling of a weakly nonlinear system having an asymmetric saturating nonlinearity is considered, and a computationally efficient model is proposed. The nonlinear model is the cascade of linear filters and memoryless nonlinearities, an LNLNL system. The two nonlinearities are upward and downward saturators, limiting, respectively, the amplitude of their input for either positive or negative excursions. In this way, distortion noted in each half an input sinusoid can be separately controlled. This simple model is applied toy simulating the signal chain of the Echoplex EP-4 tape delay, where informal listening tests showed excellent agreement between recorded and simulated program material.
Full Text 
  • Add new comment
  • Tagged
  • XML
  • BibTex
  • Google Scholar
Syndicate content
  • Home
  • News and Events
    • All Events
      • CCRMA Concerts
      • Colloquium Series
      • DSP Seminars
      • Hearing Seminars
      • Guest Lectures
    • Event Calendar
    • Events Mailing List
    • Recent News
  • Academics
    • Courses
    • Current Year Course Schedule
    • Undergraduate
    • Masters
    • PhD Program
    • Visiting Scholar
    • Visiting Student Researcher
    • Workshops 2022
  • Research
    • Publications
      • Authors
      • Keywords
      • STAN-M
      • Max Mathews Portrait
    • Research Groups
    • Software
  • People
    • Faculty and Staff
    • Students
    • Alumni
    • All Users
  • User Guides
    • New Documentation
    • Booking Events
    • Common Areas
    • Rooms
    • System
  • Resources
    • Planet CCRMA
    • MARL
  • Blogs
  • Opportunities
    • CFPs
  • About
    • The Knoll
      • Renovation
    • Directions
    • Contact

Search this site:

Winter Quarter 2023

101 Introduction to Creating Electronic Sound
158/258D Musical Acoustics
220B Compositional Algorithms, Psychoacoustics, and Computational Music
222 Sound in Space
250C Interaction - Intermedia - Immersion
251 Psychophysics and Music Cognition
253 Symbolic Musical Information
264 Musical Engagement
285 Intermedia Lab
319 Research Seminar on Computational Models of Sound
320B Introduction to Audio Signal Processing Part II: Digital Filters
356 Music and AI
422 Perceptual Audio Coding
451B Neuroscience of Auditory Perception and Music Cognition II: Neural Oscillations

 

 

 

   

CCRMA
Department of Music
Stanford University
Stanford, CA 94305-8180 USA
tel: (650) 723-4971
fax: (650) 723-8468
info@ccrma.stanford.edu

 
Web Issues: webteam@ccrma

site copyright © 2009 
Stanford University

site design: 
Linnea A. Williams