Jump to Navigation

Main menu

  • Login
Home

Secondary menu

  • [Room Booking]
  • [Wiki]
  • [Webmail]

Simulating an Asymmetrically Saturated Nonlinearity Using an LNLNL Cascade

Submitted by keunsup on Thu, 12/13/2012 - 7:31am
TitleSimulating an Asymmetrically Saturated Nonlinearity Using an LNLNL Cascade
Publication TypeConference Paper
Year of Publication2012
AuthorsLee, K. S., and J. S. Abel
Conference Name133rd Audio Engineering Society Convention
Date Published10/2012
Conference LocationSan Francisco, CA, USA
AbstractThe modeling of a weakly nonlinear system having an asymmetric saturating nonlinearity is considered, and a computationally efficient model is proposed. The nonlinear model is the cascade of linear filters and memoryless nonlinearities, an LNLNL system. The two nonlinearities are upward and downward saturators, limiting, respectively, the amplitude of their input for either positive or negative excursions. In this way, distortion noted in each half an input sinusoid can be separately controlled. This simple model is applied toy simulating the signal chain of the Echoplex EP-4 tape delay, where informal listening tests showed excellent agreement between recorded and simulated program material.
Full Text 
  • Add new comment
  • Tagged
  • XML
  • BibTex
  • Google Scholar
Syndicate content
  • Home
  • News and Events
    • All Events
      • CCRMA Concerts
      • Colloquium Series
      • DSP Seminars
      • Hearing Seminars
      • Guest Lectures
    • Event Calendar
    • Events Mailing List
    • Recent News
  • Academics
    • Courses
    • Current Year Course Schedule
    • Undergraduate
    • Masters
    • PhD Program
    • Visiting Scholar
    • Visiting Student Researcher
    • Workshops 2023
  • Research
    • Publications
      • Authors
      • Keywords
      • STAN-M
      • Max Mathews Portrait
    • Research Groups
    • Software
  • People
    • Faculty and Staff
    • Students
    • Alumni
    • All Users
  • User Guides
    • New Documentation
    • Booking Events
    • Common Areas
    • Rooms
    • System
  • Resources
    • Planet CCRMA
    • MARL
  • Blogs
  • Opportunities
    • CFPs
  • About
    • The Knoll
      • Renovation
    • Directions
    • Contact

Search this site:

Fall Courses at CCRMA

Music 101 Introduction to Creating Electronic Sounds
Music 192A Foundations in Sound Recording Technology
Music 201 CCRMA Colloquium
Music 220A Foundations of Computer-Generated Sound
Music 223A Composing Electronic Sound Poetry
Music 256A Music, Computing, and Design I: Software Paradigms for Computer Music
Music 319 Research Seminar on Computational Models of Sound Perception
Music 320 Introduction to Audio Signal Processing
Music 351A Research Seminar in Music Perception and Cognition I
Music 423 Graduate Research in Music Technology
Music 451A Auditory EEG Research I

 

 

 

   

CCRMA
Department of Music
Stanford University
Stanford, CA 94305-8180 USA
tel: (650) 723-4971
fax: (650) 723-8468
info@ccrma.stanford.edu

 
Stanford Digital Accessibility
Web Issues: webteam@ccrma
site copyright © 2009-2023
Stanford University

site design: 
Linnea A. Williams