Jump to Navigation

Main menu

  • Login
Home

Secondary menu

  • [Room Booking]
  • [Wiki]
  • [Webmail]

Learnng Sparse Feature Representations For Music Annotation And Retrieval

Submitted by jorgeh on Wed, 08/15/2012 - 5:36pm
TitleLearnng Sparse Feature Representations For Music Annotation And Retrieval
Publication TypeConference Paper
Year of Publication2012
AuthorsNam, J., J. Herrera, M. Slaney, and J. Smith
Conference Name13th International Society for Music Information Retrieval Conference
Date Published10/2012
Conference LocationPorto, Portugal
AbstractWe present a data-processing pipeline based on sparse feature learning and describe its applications to music annotation and retrieval. Content-based music annotation and retrieval systems process audio starting with features. While commonly used features, such as MFCC, are handcrafted to extract characteristics of the audio in a succinct way, there is increasing interest in learning features automatically from data using unsupervised algorithms. We describe a systemic approach applying feature-learning algorithms to music data, in particular, focusing on a highdimensional sparse-feature representation. Our experiments show that, using only a linear classifier, the newly learned features produce results on the CAL500 dataset comparable to state-of-the-art music annotation and retrieval systems.
URLhttp://ccrma.stanford.edu/~juhan/pubs/jnam-ismir2012.pdf
Full Text 
  • Tagged
  • XML
  • BibTex
  • Google Scholar
  • Home
  • News and Events
    • All Events
      • CCRMA Concerts
      • Colloquium Series
      • DSP Seminars
      • Hearing Seminars
      • Guest Lectures
    • Event Calendar
    • Events Mailing List
    • Recent News
  • Academics
    • Courses
    • Current Year Course Schedule
    • Undergraduate
    • Masters
    • PhD Program
    • Visiting Scholar
    • Visiting Student Researcher
    • Workshops 2021
  • Research
    • Publications
      • Authors
      • Keywords
      • STAN-M
      • Max Mathews Portrait
    • Research Groups
    • Software
  • People
    • Faculty and Staff
    • Students
    • Alumni
    • All Users
  • User Guides
    • New Documentation
    • Booking Events
    • Common Areas
    • Rooms
    • System
  • Resources
    • Planet CCRMA
    • MARL
  • Blogs
  • Opportunities
    • CFPs
  • About
    • The Knoll
      • Renovation
    • Directions
    • Contact

Search this site:

Spring Quarter 2022

Music 101 Introduction to Creating Electronic Sounds
Music 123F Wild Sound Explorers
Music 128 Stanford Laptop Orchestra (SLOrk)
Music 220C Research Seminar in Computer-Generated Music
Music 251 Psychophysics and Music Cognition
Music 254 Computational Music Analysis
Music 257 Neuroplasticity and Musical Gaming
Music 264 Musical Engagement
Music 285 Intermedia Lab
Music 320C Audio DSP Projects in Faust and C++

 

 

 

   

CCRMA
Department of Music
Stanford University
Stanford, CA 94305-8180 USA
tel: (650) 723-4971
fax: (650) 723-8468
info@ccrma.stanford.edu

 
Web Issues: webteam@ccrma

site copyright © 2009 
Stanford University

site design: 
Linnea A. Williams