Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Digital Waveguide Networks

The Bidirectional Delay Line

The central element in a digital waveguide network is a bidirectional delay line.


\begin{picture}(275,125)
\par
% graphpaper(0,0)(275,125)
\put(0,0){\epsfig{file=eps/bidelpic.eps}}
\put(120,85){{$z^{-M}$}}
\put(120,5){{$z^{-M}$}}
\put(-30,10){$U_{1}^{+}$}
\put(-30,90){$U_{1}^{-}$}
\put(270,90){$U_{2}^{+}$}
\put(270,10){$U_{2}^{-}$}
\end{picture}

A bidirectional delay line has associated with it

can be considered a discrete time lossless (LBR) two-port.(Indeed, it is included among the original wave digital filtering elements).

If the delay line pair has a physical length $ \Delta$ associated with it, then the two wave variables may be interpreted as travelling wave components which solve the 1D wave equation, where the speed is $ c=\Delta/T$ , and $ T$ is the sample period.

Traveling Wave Variables

We can define a related set of wave variables (current) in the bidirectional delay line by

$\displaystyle I_{j}^{+}$ $\displaystyle =$ $\displaystyle \frac{1}{Z}U_{j}^{+}$  
$\displaystyle I_{j}^{-}$ $\displaystyle =$ $\displaystyle -\frac{1}{Z}U_{j}^{-}$  

for $ j=1,2$ .

``Physical'' voltages and currents at the endpoints of the delay line pair:

$\displaystyle U_{j}$ $\displaystyle =$ $\displaystyle U_{j}^{+}+U_{j}^{-}$  
$\displaystyle I_{j}$ $\displaystyle =$ $\displaystyle I_{j}^{+}+I_{j}^{-}$  

for $ j=1,2$ .

Scattering Junctions

Scattering Junctions (series and parallel) are defined identically to the WDF case.

$\displaystyle U_{j}^{-}$ $\displaystyle = U_{j}^{+} -\frac{2Z_{j}}{\sum_{j=1}^{k}Z_{j}}\sum_{j=1}^{k}U_{j}^{+},$   $\displaystyle m=1\hdots k$   $\displaystyle {\mbox {\rm Series Connection}}$    
$\displaystyle U_{j}^{-}$ $\displaystyle = -U_{j}^{+} +\frac{2}{\sum_{j=1}^{k}Y_{j}}\sum_{j=1}^{k}Y_{j}U_{j}^{+},$   $\displaystyle m=1\hdots k$   $\displaystyle {\mbox {\rm Parallel Connection}}$    


\begin{picture}(470,225)
\par
% graphpaper(0,0)(470,225)
\put(0,0){\epsfig{file=eps/juncpic.eps}}
\par
\put(-30,110){$U_{1}^{-}$}
\put(-30,60){$U_{1}^{+}$}
\put(250,110){$U_{1}^{-}$}
\put(250,60){$U_{1}^{+}$}
\put(190,110){$U_{3}^{+}$}
\put(190,60){$U_{3}^{-}$}
\put(470,110){$U_{3}^{+}$}
\put(470,60){$U_{3}^{-}$}
\put(50,-30){$U_{2}^{-}$}
\put(110,-30){$U_{2}^{+}$}
\put(330,-30){$U_{2}^{-}$}
\put(390,-30){$U_{2}^{+}$}
\par
\put(50,200){$U_{4}^{+}$}
\put(110,200){$U_{4}^{-}$}
\put(330,200){$U_{4}^{+}$}
\put(390,200){$U_{4}^{-}$}
\par
\put(80,83){$U_{J}$}
\put(360,83){$I_{J}$}
\par
\put(125,50){{$p$}}
\put(405,50){{$s$}}
\end{picture}

Comments

1D Transmission Line Revisited

The lossless source-free 1D transmission line equations are

$\displaystyle l\frac{\partial i}{\partial t} + \frac{\partial u}{\partial x}$ $\displaystyle =$ 0  
$\displaystyle c\frac{\partial u}{\partial t} + \frac{\partial i}{\partial x}$ $\displaystyle =$ 0  

Can apply centered differences over a uniform grid:


$\displaystyle I_{i+\frac{1}{2}}(n+{\textstyle \frac{1}{2}}) - I_{i+\frac{1}{2}}(n-{\textstyle \frac{1}{2}})$ $\displaystyle +$ $\displaystyle \frac{1}{v_{0} \bar{l}_{i+\frac{1}{2}}}\left(U_{i+1}(n)-U_{i}(n)\right) = 0$  
$\displaystyle U_{i}(n) - U_{i}(n-1)$ $\displaystyle +$ $\displaystyle \frac{1}{v_{0} \bar{c}_{i}}\left(I_{i+\frac{1}{2}}(n-{\textstyle \frac{1}{2}})-I_{i-\frac{1}{2}}(n-{\textstyle \frac{1}{2}})\right) = 0$  

$\displaystyle U_{i}(n)\qquad$ $\displaystyle {\rm approximates}\qquad u(i\Delta,nT)$    
$\displaystyle I_{i+\frac{1}{2}}(n+\frac{1}{2})\qquad$ $\displaystyle {\rm approximates}\qquad i((i+\frac{1}{2})\Delta, (n+\frac{1}{2})T)$    


\begin{picture}(600,220)
\par
\put(-120,-740){\epsfig{file=eps/grid1dpic.eps}}
\end{picture}

Constant Parameters

If $ l$ and $ c$ are constant, and we choose $ v_{0}=\sqrt{\frac{1}{lc}}$ , then the difference equations simplify to a single equation in the voltages alone:

$\displaystyle U_{i}(n+1) + U_{i}(n-1) = U_{i+1}(n)+U_{i-1}(n)$    

Just solving the wave equation, at the CFL limit.

Consider a chain of bidirectional delay lines, of length $ \Delta$ , and operating at time step $ T$ connected by parallel junctions:


\begin{picture}(600,290)
\par
\put(-120,-640){\epsfig{file=eps/waveeqwgpic.eps}}
\end{picture}

An Interleaved Mesh

Notice that it is possible to split a bidirectional delay line in the following way:


\begin{picture}(600,150)
\par
\put(-120,-800){\epsfig{file=eps/bidelsplitpic.eps}}
\end{picture}

\begin{picture}(600,150)
\par
\put(-120,-800){\epsfig{file=eps/waveeqwgsplit.eps}}
\end{picture}

Varying Material Parameters

Now we have $ l(x)$ and $ c(x)$ .

Examine a mesh of the following form:


\begin{picture}(600,150)
\par
\put(-120,-750){\epsfig{file=eps/trans1dstagpic.eps}}
\end{picture}

Losses and Sources

The full Transmission Line Equations are, including losses (resistive, and shunt conductive):


$\displaystyle l\frac{\partial i}{\partial t}+\frac{\partial u}{\partial x}+ri+e$ $\displaystyle =$ 0  
$\displaystyle c\frac{\partial u}{\partial t}+\frac{\partial i}{\partial x}+gu+h$ $\displaystyle =$ 0  

Can treat this by adding a ``resistive source'' (analogous to WDF counterpart) at every junction:


\begin{picture}(600,200)
\par
\put(-120,-700){\epsfig{file=eps/1dtranslswgpic.eps}}
\end{picture}

Simplifies considerably in certain cases...


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download Meshes.pdf
Download Meshes_2up.pdf
Download Meshes_4up.pdf

``Wave Digital Filters and Waveguide Networks for Numerical Integration of Time-Dependent PDEs'', by Stefan Bilbao<bilbao@ccrma.stanford.edu>, (From CCRMA DSP Seminar Presentation, Music 423).
Copyright © 2019-02-05 by Stefan Bilbao<bilbao@ccrma.stanford.edu>
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]