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Wave Digital Filtering Overview

• A digital filter design procedure (1971)

• Transforms lumped analog (classical) filters to
discrete time

• Excellent numerical properties:

– low sensitivity of response to mutliplier coefficients

– stable under coefficient quantization

– elimination of limit cycles

because we have available a discrete-time energy.

Classical Kirchoff Network

• Basic component: N -port

i1 i2 iN
v1 v2 vN

. . .

• Characterized by port voltages vk and currents ik,
k = 1 . . . N .
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• N -ports to be connected portwise

• Instantaneous power absorbed by the N -port through
the ports is

pinst =

N
∑

j=1

vjij

Passivity

A given N -port satisfies an energy balance
∫ t2

t1

pinstdt +

∫ t2

t1

psdt = W (t2)−W (t1) +

∫ t2

t1

pldt

where we have:

W (t) = stored energy

ps(t) = internal source power

pl(t) = internal power loss

• Passive if we have
∫ t2

t1

pinstdt ≥ W (t2)−W (t1) ∀t1, t2

• Lossless if we have
∫ t2

t1

pinstdt = W (t2)−W (t1) ∀t1, t2
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Passivity for LTI N-ports

For an LTI N -port, we (sometimes) have an impedance
relationship

v̂(s) = Z(s)̂i(s)

at steady state

• Passive (for real-valued network) if Z is positive real,
i.e.

Re (Z + Z∗) ≥ 0 for Re(s) ≥ 0

• Lossless if, in addition,

Re (Z + Z∗) = 0 for Re(s) = 0

Circuit Elements

The standard passive LTI circuit elements are

Inductor : v = L
di

dt
Z = Ls

Resistor : v = R0i Z = R0

Capacitor : i = C
dv

dt
Z =

1

Cs
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v v v

i i i

L R0 C

Ideal Transformer : v2 = nv1 i1 = −ni2
Gyrator : v1 = −Ri2 v2 = Ri1

v1 v2 v1 v2

i1 i2 i1 i2R1/n

Also, have active elements like current, voltage sources
etc.

Kirchoff’s Laws

Any number k of individual ports can be connected in

• Series (KCL),

i1 = i2 = . . . = ik
v1 + v2 + . . . + vk = 0

• Parallel (KVL)

v1 = v2 = . . . = vk
i1 + i2 + . . . + ik = 0
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A series or parallel connection is a lossless k-port.

• Tellegen’s Theorem implies that a network made up
of passive N -ports will itself be passive.

Discretization

• Closed network defines a set of ODEs in the state
variables (solution may not exist or be unique)

• Need a discretization method (for digital filtering, or
simulation)

Wave Digital Filters are based on the application of a
spectral mapping or bilinear transform:

s→ 2

T

1− z−1

1 + z−1

which takes the s RHP to the z outer disk:

Re(s)

Im(s)

=⇒ Re(z)

Im(z)
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T is the time step and 1
T is the sampling frequency.

• Stable causal analog filters mapped to stable causal
digital filters. Also: DC→ DC, ∞ → Nyquist.

• Discrete “impedances” inherit passivity property (now
called pseudo-passivity), and are called positive real in
the outer disk.

Trapezoid Rule

In the time domain, this bilinear transform is equivalent
to applying the trapezoid rule in order to integrate (or
differentiate).

• Example: for an inductor

v̂ = L
dî

dt
Under bilinear transformation:

Z(s) = Ls→ 2L

T

1− z−1

1 + z−1

In time domain:

v(n) + v(n− 1)

2
= L

i(n)− i(n− 1)

T

• Accurate to order T 2
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• The above difference equation defines a digital
one− port, with discrete-time voltage and current v
and i.

• Only reactive elements are affected by this
transformation (i.e. not resistors, ideal transformers,
or Kirchoff’s Laws).

Connecting Digital N-ports

• Can connect digital one-ports using Kirchoff’s Laws,
and still have power conservation. If elements are
pseudopassive, then so is a network constructed from
such elements.

• Example: parallel LC connection

L C

i

v 2L
T

2C
TT T

T T

-1

-

-
-

-

i

v

• Problem: Delay-free loops.

• Result: Signal-flow diagrams are non-realizable
(unless one is willing to perform matrix inversions).
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Wave Variables

It is possible to get around these realizability problems by
introducing wave variables (1971) borrowed from
microwave engineering

Introduce, for any port variables v and i, the quantities

a = v + iR Input Wave

b = v − iR Output Wave

R is an arbitrary positive constant, called the port
resistance. We can also define power-normalized wave
variables as

a′ =
v + iR

2
√
R

b′ =
v − iR

2
√
R

The two types of waves are simply related to eachother by

a = 2
√
Ra′

b = 2
√
Rb′

Power waves are useful in dealing with time-varying and
nonlinear circuit elements.
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Example: Wave Digital Inductor

From the trapezoid rule (bilinear transform) we have

v(n) + v(n− 1)

2
= L

i(n)− i(n− 1)

T
Inserting wave variables, we get:

a(n+1)+b(n+1)+a(n)+b(n) =
2L

RT
(a(n + 1)− b(n + 1)− a(n) +

And under the choice R = 2L
T , we get

b(n) = −a(n− 1)

A strictly causal input/output relationship. (Same in
power-normalized case).

• Energetic interpretation:

pinst(n) = v(n)i(n)

= a′(n)2 − b′(n)2

= a′(n)2 − a′(n− 1)2

• Square of value in delay register has interpretation as
stored energy

Wave-Digital Elements

We can derive wave digital equivalents of the standard
circuit elements.
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b

a

b = 0

a

b

a

z−1 z−1R = 2L
T R = R0 R = T

2C

−1
Inductor Resistor Capacitor

b

a

b

a

b

a

b

a
−1 + +

- -2e 2Rf

Short

Circuit

Open

Circuit

Voltage

Source

Current

Source

b1

a1

a2

b2
R1 R2

1
n

n

1/n R
b1

a1

a2

b2

b1

a1

a2

b2

b1

a1

a2

b2
R1 R2

−1

Ideal Transformer Gyrator

Adaptors

Connections between the elements are governed, as
before, by Kirchoff’s Laws. In terms of wave variables, we
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have, for a connection of k ports:

bm = am − 2Rm
∑k

j=1Rj

k
∑

j=1

aj, m = 1 . . . k Series Connection

bm = −am +
2

∑k
j=1Gj

k
∑

j=1

Gjaj, m = 1 . . . k Parallel Connection

where Gj =
1
Rj

is the conductance at port j. The signal

processing block which carries out this operation is called
an adaptor

a1 b1

a2

b2

b3 a3

a1 b1

a2

b2

b3 a3

a1 b1

a2

b2

b3 a3

a1 b1

a2

b2

b3 a3
Series Adaptor Parallel Adaptor

Scattering Matrices

The series and parallel adaptor equations can be written
as

b = Sa
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where
S = I− αT1 (Series)
S = − I + 1Tβ (Parallel)

where α = 2
∑k
i=1Ri

(R1 . . . Rk), β = 2
∑k
i=1Gi

(G1 . . . Gk)

we have also: S2 = I in either case. For
power-normalized waves:

S′ = I− α′Tα′ Series

S′ = −I + β′Tβ′ Parallel

where α′ =
√
α and β′ =

√
β (over all components). We

have S′TS′ = S′S′T = I (orthonormal, unitary).

• Form of the adaptor equation is simple (O(N) adds,
multiplies)

• Easy to apply rounding rules so that junction behaves
passively, even in finite arithmetic:

– signals:Extended precision within junction.
Magnitude truncation on outputs

– reflection parameters (α, β) may also be truncated
without affecting passivity (though accuracy will of
course suffer).
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Multidimensional Wave Digital Filters
and Numerical Integration of Partial

Differential Equations

Distributed Problems and Coordinate Changes

Symmetric Hyperbolic Systems

Multidimensional time and space-dependent physical
systems are often described by systems of PDEs which
are symmetric hyperbolic. For example, in 1D, a typical
situation is:

P
∂u

∂t
= A

∂u

∂x
+Bu

where P(x) is symmetric, > 0, and A(x) is symmetric
(both square, real). Can write:

uTP
∂u

∂t
= uTA

∂u

∂x
+ uTBu

1

2

∂uTPu

∂t
=

1

2

∂uTAu

∂x
− 1

2
uT
∂A

∂x
u +

1

2
uT(B +BT)u

and integrating over the real line (assuming no
boundaries,

∂

∂t

∫

x

uTPudx =

∫

x

uT
(

−A′ +B +BT
)

u
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•
∫

x u
TPudx is usually called the total energy of the

system.

• like an ODE describing evolution of energy.

• if right-hand side is zero, then the system is lossless
(in weighted P norm).

• if right-hand side is never positive, then the energy
can only decrease.

• symmetric hyperbolic → reciprocal networks (almost).

CFL Criterion

Hyperbolic systems → finite propagation speeds.

For explicit numerical methods on a grid, have a
necessary stability condition on the time-step space-step
ratio. In 1D, on a regular grid, only neighboring points:

v0 ≡
space− step

time− step
≥ maximum speed.

(Courant-Friedrichs-Lewy Condition).
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T

∆

t = (n + 1)T :

t = nT :

Current Point

In higher-D, same general result, but extra factors appear
(solution does not necessarily move along a grid
direction).

In the network approaches, CFL appears in an elementary
way as a constraint on the positivity of the circuit
elements (for passivity).

Multidimensional Problems and Coordinate
Transformation

Multidimensional (distributed) systems→ system of
PDEs.

Time-dependent systems derived from conservation laws:

• may be of hyperbolic type (finite speeds)

• quantities conserved with respect to time alone.
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In order to obtain a multidimensional circuit
representation of a system of PDEs, useful to consider
coordinate changes

u = (x, t)T → t = (t1 . . . tk)
T

New coordinates should be causal, in the sense that:

• Any positive change ∆t in the variable t (time) must
be reflected by a similar positive change ∆ti in all the
new coordinates ti, i = 1 . . . k.

• Conversely, any positive change ∆ti in any of the new
coordinates must produce a positive change in the
time variable t.

A simple set of linear coordinate transformations:

t = H−1Vu

• V is a diagonal square matrix of the form
diag(1, . . . , v0) used to nondimensionalize the original
coordinates. v0 has dimension of a velocity.

• H is a square (preferably orthonormal) matrix.
Elements in bottom row are all positive (to satisfy
above criteria).
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Remarks: A theoretical “hack” for extending passivity
ideas to multi-D

A Simple Coordinate Change and Sampling

If we have only one spatial dimension, then coordinate
change options are limited. The only suitable one (in this
context) is

[

t1
t2

]

=
1√
2

[

1 1
−1 1

] [

1
v0

] [

x
t

]

A simple rotation of the coordinates by 45 degrees. If we
now define uniform grids in the two coordinate systems,
we get:

(a) (b)

x x

v

0

t v

0

tt

2

t

1

�

�

T

2

T

1

P

Q

1

• grid spacings (∆, 1
v0
∆) in original coordinates,

(T1, T2 = T1) in new.

• grids partially align, if we have T1 =
√
2∆.
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Coordinate Changes in Higher Dimensions:
Hexagonal Coordinates

The transformation defined by

H =









1√
2
− 1√

2
0

1√
6

1√
6

−
√

2
3

1√
3

1√
3

1√
3









when uniformly “sampled” in the new coordinates gives
rise to the following grid pattern (viewed in the original
coordinate system):

x

y

�

p

3�

1

Three different grids (white, grey, black points) which
exist every third time step.
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Rectangular coordinates

In order to generate a standard rectangular grid by
uniformly sampling in the causal coordinates, need to use
an embedding:

H =





1 0 −1 0 0
0 1 0 −1 0
1 1 1 1 1





which maps (x, y, t) to a 5-dimensional space t =
(north+time , south+time , east+time, west+time, time
alone), and we get a normal rectangular grid in (x, y) if
we sample uniformly in the five directions

• Ugly theoretical manipulation to do something simple;
not actually going to solve a problem in 5D. Need
them to define directions of energy flow.

• Now need to define a particular right pseudo-inverse
H−R...in practice, choice is relatively immaterial (but
still must have elements of right column positive).

• Crux is: need five dimensions for a rectilinear grid,
because in a simulation, energy can approach a grid
point from any of the four compass points (and also
from a past grid point at the same location).

• in 3D need to embed in a 7-D system.
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Picture is:

y

x

t

t1

t2

t4

t3

t5

Multi-Dimensional Elements and Wave Digital
Filters

MD N-ports

Need to extend the notion of passivity to distributed
networks.

Basic element, the N -port has the same form in multi-D:

• “Port” is no longer localized in space, and thus we
have, for any port j,

vj = vj(x, t)

ij = ij(x, t)
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• instantaneous power (or power density) absorbed at
any point (x, t) is

pinst(x, t) =
N
∑

j=1

vjij

• Also have distributed source power ps and dissipated

power pd

• N -ports must be connected portwise

• stored energy requires a generalized treatment...

MD N-ports Continued

• If the N -port is reactive, we have an associated
stored energy flux. In terms of causal coordinates
t = (t1 . . . tk), this is a vector function

Wst(x, t) = (W1,W2, . . . ,Wk)

For an causal MD − passive N -port defined over a
region G, we need Ws ≥ 0 everywhere in G. Stored
energy flows forward in physical time (and thus
forward in all the causal coordinates)
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G

n
t

• Integral energy balance (with respect to a region G) is
∫

G

(pinst + ps) dt =

∫

G

pddt +

∫

∂G

Wst · ndσ

MD-Passivity

An MD N -port is called integrally MD-passive (in G) if
we have ∫

G

pinstdt−
∫

∂G

Wst · ndσ ≥ 0

or differentially MD passive, if we have

pinst −∇ ·Wst ≥ 0

and MD-lossless if equality holds.

• Kirchoff’s Laws (treated as an N -port) are the same
in MD, so that a Kirchoff connection of MD
N -ports will itself behave passively (Tellegen).
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• The resistor, defined by v = iR, R constant is also
the same in MD, so MD-passive as well.

• Transformers, gyrators lossless as well, provided we
define Wst ≡ 0

• Reactive elements need a more involved treatment...

The MD Inductor

Consider the following relation:

v(t) = L
∂i(t)

∂tj

where L is a positive constant, and tj, j = 1 . . . k is an
causal coordinate.

• Defined over entire t space, but is really just a set of
1D differential relations.

• v obtained from i by integrating in tj direction
(forward in time).

We can define a discrete approximation by applying the
trapezoid rule in the tj direction:

v...,nj,... + v...,nj−1,...

2
=
L

T1

(

i...,nj,... − i...,nj−1,...

)

24



And introducing wave variables,

an1,...,nk = vn1,...,nk +Rin1,...,nk
bn1,...,nk = vn1,...,nk −Rin1,...,nk

can get the MD-equivalent of the wave-digital inductance
one-port:

b...,nj,... = −a...,nj−1,..., , R =
2L

Tj
(1)

MD-Inductor (Continued)

• If the coordinate is causal, then the MD inductance
one-port takes an input (at every grid point), shifts
and delays it, then outputs.

• Discretization (in LSI case) can be viewed as a
multidimensional passivity-preserving spectral
mapping. (need to define multi-D positive realness).

• graphical representations are:

(L;D

j

) (C;D

j

)

i i

v vT

j

T

j

a a

b b

-1

R=

2L

T

j

R=

T

j

2C

(a) (b)

1
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• stored energy flux (of continuous element) is 1
2Leji

2

where ej is a unit vector in the tj direction.

• MD-passive if L is positive (lossless)

• capacitors...dual case.

MD Inductor: Expanding Out Spatial
Dependence

In order to see how an MD Inductor can be programmed,
consider an inductor of inductance L and direction t1 and
time step T1:

-1 -1 -1 -1
T T T

ba

T1

a a ab b b

x = (i− 1)∆ x = (i + 1)∆x = i∆

Multi-dimensional Kirchoff Circuits and Wave
Digital Networks
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The 1D Transmission Line

• Described by the telegrapher’s equations:

l
∂i

∂t
+
∂u

∂x
+ ri + e = 0

c
∂u

∂t
+
∂i

∂x
+ gu + h = 0

u

i

x

• Material parameters:

– l(x) = inductance/unit length

– c(x) = shunt capacitance/unit length

– r(x) = resistance/unit length

– g(x) = shunt conductance/unit length

• e(x, t), h(x, t) are sources (possibly distributed,
time-varying).
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The 1D Transmission Line (cont’d)

• For l, c constant, r = g = e = f = 0, reduces to the
wave equation

∂2u

∂t2
= γ2

∂2u

∂x2
γ =

√

1

lc

Otherwise, describes dispersive, lossy 1D wave
propagation.

• A simple model problem.

First Attempt at a Kirchoff Circuit (cont’d)

We can write the telegrapher’s equations down directly as
a two-loop circuit, with currents i and u

r0
r0 = scaling

parameter, dimensions of resistance:

(�1;D

x

)

(�1;D

x

)

(1;D

x

) (1; D

x

)

(

l

r

0

; D

t

)

(r

0

;D

t

)

r

r

0

r

r

0

gr

0

gr

0

e

r

0

e

r

0

h h

i

1

i

1

i

2

i

2

(

v

0

l

r

0

� 1;D

t

0)

(v

0

r

0

� 1; D

t

0)

(1; D

t

0 �D

x

)

(1; D

t

0 �D

x

)

1

28



Problem: Not MD-passive.

Fix: Classical network theory manipulations.

Passive MD Circuit

To any T-junction corresponds a lattice or Jaumann
equivalent:

v

1

v

1

v

1

v

2

v

2

v

2

i

1

i

1

i

2

i

2

i

1

i

2

Z

A

Z

A

Z

B

Z

1

Z

1

Z

2

Z

2

Z

1

2

Z

2

2

1/-1

(a) (b) ()

Figure 1: Equivalent Two-ports: (a) T-juntion, with impedanes Z

A

and

Z

B

and (b) and (), lattie and Jaumann equivalent two-ports, both with

Z

1

= Z

A

and Z

2

= Z

A

+ 2Z

B

.

1

Employing this equivalence gives a concretely MD-passive
structure
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Comments

• Energetically, the system of equations has been
broken into several smaller interacting parts, each of
which is passive on its own.

• The passive part of the circuit (RL) dissipates
MD-power.

• Source-free case: with power-normalized waves, all
operations (scattering, shifting) are norm-reducing (in
finite arithmetic as well).

• With the judicious choice of r0 =
√

lmin
cmin

, the stability

bound is

v0 ≥
√

1

lmincmin
30



which is different from (worse than) the optimal
bound

v0 ≥

√

1

(lc)min

Fix: preconditioning of equations

• Memory requirements are double that of centered
differences (a multistep method)

Simplifications

If l and c are constant, and we have no sources then we
can derive a simplified form (a).

If in addition, we have lg = cr, then the line is
distorionless, and we have simple travelling waves, which
are attenuated (b).

+ +

+ +
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1
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1
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2D “Parallel Plate”

• Equations are:

l
∂ix
∂t

+
∂u

∂x
+ rix + e = 0

l
∂iy
∂t

+
∂u

∂y
+ riy + f = 0

c
∂u

∂t
+
∂ix
∂x

+
∂iy
∂y

+ gu + h = 0

• – (ix, iy) = current density in plate

– u = voltage across plates

– other quantities as before; in general, l, c, r and g
all may be spatially varying.

• A useful, general model problem: identical to systems
of

– an ideal membrane (in forces and transverse
velocity)

– TE or TM mode

– 2D linear acoustic medium (velocities and
pressure)
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A Passive Circuit and Wave Digital Network

Applying a coordinate transformation (for rectangular
coordinates), we get the following circuit and network:
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Other Systems

The circuit approach is applicable to a wide range of
problems including:

• 3D Maxwell’s Equations (inhomogeneous, lossy
materials)

• 3D Linear Elasticity Equations (inhomogeneous)

and with some tampering, to parabolic/borderline
parabolic problems like

• Heat Equation (nD)

• Schrodinger’s Equation (nD)

• Euler-Bernoulli Equations for a beam (1D) and plate
(2D)

Most interestingly, the method can also be applied to
systems of nonlinear conservation laws, in particular

• Euler Equations (lossless nonlinear fluid dynamics),
with an extension to the lossy case (Navier-Stokes).

In Sum

• Physical system → circuit representation (concretely
passive)
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• Circuit representation → Signal Flow Graph

Question: Is there another way of deriving similar
structures?
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The Waveguide Mesh and Numerical
Integration

Digital Waveguide Networks

• Networks made up of connections of transmission-line
like “unit element” filters, connected at scattering
junctions.

• Originally conceived as a stable means of doing
artificial reverberation, and modelling room acoustics.

• Impedances as well as line lengths may be
time-varying, (audio effects, such as chorusing,
flanging, etc.)

• Same passivity properties as circuit-based method
(under finite arithmetic as well).

36



• a different point of view from the multi-D circuits:
Begin in a discrete setting, no spectral mapping is
used (explicitly).

• when applied to E+M problems, is roughly equivalent
to TLM (Transmission Line Matrix method).

The Bidirectional Delay Line

The central element in a digital waveguide network is a
bidirectional delay line.

z−M

z−MU+
1

U−
1 U+

2

U−
2

A bidirectional delay line has associated with it

• an impedance Z > 0 (Y = 1
Z is the admittance

• a delay (usually an integer M ≥ 1) number of
samples), same in both directions.

• two incoming and outgoing (voltage) wave variables

• (optional) a physical length.
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can be considered a discrete time lossless (LBR)
two-port.(Indeed, it is included among the original wave
digital filtering elements).

If the delay line pair has a physical length ∆ associated
with it, then the two wave variables may be interpreted as
travelling wave components which solve the 1D wave
equation, where the speed is c = ∆/T , and T is the
sample period.

Traveling Wave Variables

We can define a related set of wave variables (current) in
the bidirectional delay line by

I+j =
1

Z
U+
j

I−j = − 1

Z
U−
j

for j = 1, 2.

• sign inversion of incoming current wave with respect
to outgoing (not left/right, but could be defined this
way).

• current waves are auxiliary; need them only to define
scattering junctions (not stored variables).
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“Physical” voltages and currents at the endpoints of the
delay line pair:

Uj = U+
j + U−

j

Ij = I+j + I−j

for j = 1, 2.

• A different formulation from MD wave digital filters:
wave variables are instantaneously related to physical
quantities (not to derivatives of them)

Scattering Junctions

Scattering Junctions (series and parallel) are defined
identically to the WDF case.

U−
j = U+

j − 2Zj
∑k

j=1Zj

k
∑

j=1

U+
j , m = 1 . . . k Series Connection

U−
j = −U+

j +
2

∑k
j=1 Yj

k
∑

j=1

YjU
+
j , m = 1 . . . k Parallel Connection
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U−
1

U+
1

U−
1

U+
1

U+
3

U−
3

U+
3

U−
3

U−
2 U+

2 U−
2 U+

2

U+
4 U−

4 U+
4 U−

4

UJ IJ
p s

Comments

• Passivity follows from power conservation at the
junctions (Kirchoff’s Laws) and LBR property of delay
lines. No need to invoke MD-passivity, since we are
dealing with, in a sense, lumped elements (unit
element filters).

• Passivity under coefficient and signal truncation
follows just as in WDF case.

• Generalizations include:

– Power-normalization of waves (as per WDFs)

– allowing Z to be time-varying. Still passive, if
power-normalized variables are used. (audio effects
algorithms)

– non-integer (and also posibly time-varying) delay
line lengths. (audio effects algorithms)
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– delays can be replaced by arbitrary bounded-real
functions of z−1 (dispersion).

– vector-valued signals. For an n-component
“waveguide”, we now require:

n× n matrix impedance Z, with Z > 0. 2n× 2n
matrix reflectance S, S paraunitary. (comes in
handy for solids, also as framework for treating
TLM “super-symmetric condensed node”)

1D Transmission Line Revisited

The lossless source-free 1D transmission line equations
are

l
∂i

∂t
+
∂u

∂x
= 0

c
∂u

∂t
+
∂i

∂x
= 0

Can apply centered differences over a uniform grid:

Ii+1
2
(n + 1

2)− Ii+1
2
(n− 1

2) +
1

v0l̄i+1
2

(Ui+1(n)− Ui(n)) = 0

Ui(n)− Ui(n− 1) +
1

v0c̄i

(

Ii+1
2
(n− 1

2)− Ii−1
2
(n− 1

2)
)

=
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Ui(n) approximates u(i∆, nT )

Ii+1
2
(n +

1

2
) approximates i((i +

1

2
)∆, (n +

1

2
)T )

• Grid variables are staggered in time and space (Yee,
FDTD).

I I I IU U U

i� (i+

1
2

)�(i �

1
2

)�(i�

3
2

)� (i+

3
2

)�(i+ 1)�(i � 1)�

: : :: : :

1

Constant Parameters

If l and c are constant, and we choose v0 =
√

1
lc, then

the difference equations simplify to a single equation in
the voltages alone:

Ui(n + 1) + Ui(n− 1) = Ui+1(n) + Ui−1(n)

Just solving the wave equation, at the CFL limit.
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Consider a chain of bidirectional delay lines, of length ∆,
and operating at time step T connected by parallel
junctions:
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• Junction voltages solve the wave equation at CFL, if
all impedances are identical (no scattering)

An Interleaved Mesh

Notice that it is possible to split a bidirectional delay line
in the following way:
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• Now have two half-sample, half-length delay lines of
equal impedance (series junction functions, for the
moment,as merely a sign inverter).

• Can employ this identity in the previous structure:
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• Solves constant-parameter Transmission Line
Equations, at CFL, on interleaved grid, if we choose

Z =
√

l
c for all subsections.

• Junction currents at series junctions give physical
current.

Varying Material Parameters

Now we have l(x) and c(x).

• Expect dispersion (scattering due to varying line
impedance) Natural fix: Delay line impedances should
be different.
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• Local propagation speed,
√

1
lc also varies Fix: Insert

passive “storage” registers at every junction, in order
to slow down local propagation speed in mesh.

Examine a mesh of the following form:
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�

2
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• will solve T-line equations if line impedances chosen
properly

• Get a family of difference methods, each with
different stability properties.

• stability constraints derive from positivity condition
on impedances (as per WDFs).

Losses and Sources

The full Transmission Line Equations are, including losses
(resistive, and shunt conductive):
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l
∂i

∂t
+
∂u

∂x
+ ri + e = 0

c
∂u

∂t
+
∂i

∂x
+ gu + h = 0

Can treat this by adding a “resistive source” (analogous
to WDF counterpart) at every junction:
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Z
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1

Simplifies considerably in certain cases...

2D Parallel Plate Revisited

Full equations are, again,

l
∂ix
∂t

+
∂u

∂x
+ rix + e = 0

l
∂iy
∂t

+
∂u

∂y
+ riy + f = 0

c
∂u

∂t
+
∂ix
∂x

+
∂iy
∂y

+ gu + h = 0
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Now, various levels of downsampling the computational
grid (interleaving), for centered differences:

Full rate

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

U I

x

,I

y

1

Half-rate

U UU U

U UU U

U UU U

U UU U

I

x

,I

y

I

x

,I

y

I

x

,I

y

I

x

,I

y

I

x

,I

y

I

x

,I

y

I

x

,I

y

I

x

,I

y

I

x

,I

y

I

x

,I

y

I

x

,I

y

I

x

,I

y

I

x

,I

y

I

x

,I

y

I

x

,I

y

I

x

,I

y

1

Quarter and One-eighth Rate:
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Mesh for 2D Transmission Line

Can construct a mesh operating at the maximally
interleaved grid:
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• Can juggle impedances so that this solves the 2D
transmission line

• Some configurations operate at CFL:

v0 = maxgrid

√

2
lc
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FDTD and TLM: A Messy Mystery

We have, so far:

• These meshes calculate FDTD solutions (with special
treatment to discretization of material parameters).

• An energetic interpretation of the method.

• Stability takes form of positivity constraint on
impedances (instead of an eigenvalue condition).
Gives rise to CFL criterion.

But, this mesh seems to be equivalent to the so-called
“expanded” or “extended” node formulation of TLM.

TLM=FDTD? (in infinite-precision machine arithmetic)

A few vague statements in the literature...

More on TLM

Expanded node TLM solves for interleaved, or staggered
(in space and time) field components.

Other “condensed” formulations, such as the Hybrid
Symmetric, Super Symmetric etc., solve for the field
quantities at the same grid location.
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Still just centered differences (but not interleaved). Some
comments:

• TLM: a hunt for unitary scattering junctions
Observation: In waveguide (or WDF) formulation, do
not require scattering matrices to be unitary for power
conservation. But if needs be, then we have a Quick
fix: Power-normalized waves (unknown in TLM).

• Condensed formulations. Observation: Scattering
junctions derived using field-theoretic manipulations
(vaguely like MD-circuit approach). Observation: Can
also approach the problem by using vector delay lines.
Build network, then set impedances (now matrices)
accordingly.

• Passive arithmetic properties Observation: unknown
in TLM.

Lesson: parochialism is a sad thing.

WDFs vs. Transmission line Meshes

• Stability, passivity, numerical properties: Identical.

• Finite-difference interpretation:
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– meshes: “two-step” method.

– WDFs: “multistep” method.

both rewritten as one-step methods in the wave
variables.

• Accuracy:

– meshes:can be made more accurate (and faster
converging) by identification with higher-order
difference methods.

– WDFs:passivity-preserving spectral mapping
(A-stable method) precludes this.

• Upwind methods:

– meshes: not easy (because delay lines are
bidirectional)

– WDFs: directions are split. Can be applied to
advective problems (supersonic flow etc.)

• Irregular grids:

– meshes: Possible.

– WDFs: Difficult, because we require a smooth
coordinate system at the outset (and integrate
along specific directions).

• Distributed Nonlinear problems (fluid flow)
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– meshes: unknown.

– WDFs: works.

• Interleaving:

– meshes: by construction.

– WDFs: difficult, because we are modelling
pointwise behavior of PDEs (possible to get
around this by incorporating multidimensional
transmission lines into formulation).
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Beams

• support transverse elastic wave propagation in a
medium which is essentially 1D (longitudinal and
torsional modes also exist)

• dispersive (even in homogeneous medium)

• medium has its own restoring stiffness

• transverse motion assumed to lie in one direction

A(x)

x

w
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Euler-Bernoulli Beams

• a first approximation: neglects effects of rotational
lateral inertia. Plane subsections remain plane and
parallel to the normal.

• Relevant quantities:

– ρ = density

– A = cross-subsectional area

– E = Young’s modulus

– I = moment of inertia

• Get a set of equations:

∂w

∂t
=

1

ρA

∂2q

∂x2

∂q

∂t
= −EI∂

2w

∂x2

In constant parameter case:

∂2w

∂t2
= −b2∂

4w

∂x4
, b =

√

EI

ρA
(2)

• Phase velocity unbounded
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Mesh for Euler-Bernoulli Beam
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• Problem: unbounded phase velocity gives a very
restrictive constraint on the time step:

T ≤ 1

2
min
x=i∆

√

ρxAx

ExIx
∆2 (3)

• A typical problem for explicit methods for parabolic
problems (though E-B are borderline parabolic).
Similar problems crop up in the WDF approach (also
possible).

• Need a better model...
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Timoshenko’s Model (1921)

• Take into account shear and lateral inertia effects

• Transverse motion still constrained to lie in one
perpendicular direction

• Plane subsections remain plane, but no longer parallel
to the normal direction:

ψ y+

• New degree of freedom, ψ(x) (in addition to w.
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Timoshenko’s Equations

m(x)
m(x+ dx)

q(x)

q(x+ dx)
w(x)

ψ(x)

dx

• Dependent Variables:

– w = vertical displacement

– q = shear force

– ψ = angular deviation

– m = bending moment

• New material parameters:

– G = shear modulus

– κ = “Timoshenko coefficient” (geometrical)
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Timoshenko’s Equations Cont’d.

System:










ρA 0 0 0

0 1
AκG 0 0

0 0 ρI 0

0 0 0 1
EI











∂

∂t











v

q

ω

m











=











0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0











∂

∂x











v

q

ω

m











+











0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0





















v

q

ω

m











with

v =
∂w

∂t
ω =

∂ψ

∂t
m = EI

∂ψ

∂x
q = AκG

(

∂w

∂x
− ψ

)

• A symmetric hyperbolic system (bounded velocities)

• A pair of antisymmetrically coupled lossless
transmission lines
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Networks for Timoshenko’s Equations
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Figure 1.8: Two Waveguide Networks for Timoshenko's Equations
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Multidimensional Circuit and Wave Digital
Network for Timoshenko’s Equations
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Figure 1.9: MDKC for Timoshenko's Equations
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Figure 1.10: MDWDF for Timoshenko's Equations
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Stability Condition for Waveguide Network
for Timoshenko System

The maximum speeds of the Timoshenko Beam are

c1,max = max
x

√

Gκ

ρ
c2,max = max

x

√

E

ρ

Stability conditions for the staggered waveguide mesh
(TLM) are:

∆ ≥ Tmax



max
x=∆i

√

1

( ρ
Gκ)−

T
2(ρA)

,max
x=∆i

√

EI

ρI − T
2





Also: A maximum permissible time-step (independent of
∆) Aproaches CFL bound as T → 0.

• Stability bound is complicated by the staggering (in
contrast to the transmission line case)

• Fix: Can make stability bound optimal by introducing
vector travelling waves
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Plates

• a 2D generalization of the beam.

• motion assumed transverse

• dispersive

h

x

y

• There is a direct 2D analogue of the classical
Euler-Bernoulli Equations; same unbounded velocities,
same strict stability bounds.
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Mindlin’s Plate Equations (1950s)

Mindlin generalized Timoshenko’s Equations to 2D.

• The new dependent variables are w (height) and
(ψx, ψy) (angles).

• plate thickness is h(x, y)

• Can be written as a system of eight PDEs:

ρh
∂v

∂t
=
∂qx
∂x

+
∂qy
∂y

1

κ2Gh

∂qx
∂t

=
∂v

∂x
+ ωx

1

κ2Gh

∂qy
∂t

=
∂v

∂y
+ ωy

ρh3

12

∂ωx
∂t

=
∂mx

∂x
+
∂mxy

∂y
− qx

ρh3

12

∂ωy
∂t

=
∂mxy

∂x
+
∂my

∂y
− qy

1

D

∂mx

∂t
=
∂ωx
∂x

+ ν
∂ωy
∂y

1

D

∂my

∂t
=
∂ωy
∂y

+ ν
∂ωx
∂x

2

D(1− ν)

∂mxy

∂t
=
∂ωy
∂x

+
∂ωx
∂y

with:

ωx =
∂ψx
∂t

ωy =
∂ψy
∂t

v =
∂w

∂t

D =
Eh3

12(1− ν2)
ν = Poisson′sratio (4)
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• A 2D “parallel plate” connected to a 5-variable system

Multidimensional Passive Circuit for
Mindlin’s Equations
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Figure 1.11: MDKC for Mindlin's Plate Equations
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Multidimensional Wave Digital Network for
Mindlin’s Equations
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Figure 1.12: MDWDF for Mindlin's Plate Equations
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Elastic Solids

In a linear, isotropic (but not necessarily homogeneous)
elastic medium we have

• Stress-strain relation:

















σxx
σyy
σzz
σxy
σxz
σyz

















=

















λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ

































exx
eyy
ezz
exy
exz
eyz

















with

eij =
1

2
(ui,j + uj,i) , i, j = x, y, z.

λ,µ are the Lame constants. (ux, uy, uz) is the
displacement vector at any point in the medium.
Also, σij = σji (Cons. of angular momentum)
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• Force balance

ρ
∂2ux
∂t2

=
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

ρ
∂2uy
∂t2

=
∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

ρ
∂2uz
∂t2

=
∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

(neglecting body forces)
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First-order system

Rewriting as a first-order system in the stresses and
velocities (vx, vy, vz) =

∂
∂t(ux, uy, uz) gives





























ρDt 0 0 −Dx 0 0 −Dy 0 −Dz

0 ρDt 0 0 −Dy 0 −Dx −Dz 0
0 0 ρDt 0 0 0 −Dz −Dy −Dx

−Dx 0 0 βDt γDt γDt 0 0 0
0 −Dy 0 γDt βDt γDt 0 0 0
0 0 −Dz γDt γDt βDt 0 0 0

−Dy −Dx 0 0 0 0 αDt 0 0
0 −Dz −Dy 0 0 0 0 αDt 0

−Dz 0 −Dx 0 0 0 0 0 αDt

























































vx
vy
vz
σxx
σyy
σzz
σxy
σxz
σyz





























=

with

α =
1

µ
β =

µ + λ

µ (2µ + 3λ)
γ =

λ

2µ (2µ + 3λ)

• Symmetric hyperbolic even if α, β, λ and ρ are
spatially varying.

• Coupling of time derivatives (this does not occur in
the other systems seen so far). Thus a scalar
staggered grid is out of the question (need σxx, σyy
and σzz at same grid point, at same time step).
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Fix: vectorized differences.
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Computational Grid for Elastic Solids

σn

vz

vy

vx

σxy

σxz

σyz

x

y
z
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Solid Mesh
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Comments

• maximum allowable time-step is optimal:

v0 ≥ max
grid





√

3(λ + 2µ)

ρ



 =
√
3cP

under an appropriate choice of impedances in the
network.

• Required vector wave variables, so need to pay
attention to implementation of vector junction (in
finite arithmetic).

• Multidimensional circuit approach works as well, but
time-step is sub-optimal.

• Free boundary is simple to implement, in a perfectly
lossless manner.

• Need to perform a time-integration (somehow) in
order to get displacements.
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