Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Perfect Reconstruction Filter Banks

We now consider filter banks with an arbitrary number of channels, and ask under what conditions do we obtain a perfect reconstruction filter bank?

Polyphase analysis will give us the answer readily.

Let's begin with the $ N$ -channel filter bank below:

\epsfig{file=eps/FBNchan.eps,width=\textwidth }

The next step is to expand each analysis filter $ H_k(z)$ into its $ N$ -channel ``Type 1'' polyphase representation:

$\displaystyle H_k(z) = \sum_{l=0}^{N-1} z^{-l} E_{kl}(z^N)
$

or

$\displaystyle \underbrace{\left[\begin{array}{c} H_0(z) \\ [2pt] H_1(z) \\ [2pt] \vdots \\ [2pt] H_{N-1}(z)\end{array}\right]}_{\bold{h}(z)} =
\underbrace{\left[\begin{array}{cccc}
E_{0,0}(z^N) & E_{0,1}(z^N) & \cdots & E_{0,N-1}(z^N) \\
E_{1,0}(z^N) & E_{1,1}(z^N) & \cdots & E_{1,N-1}(z^N)\\
\vdots & \vdots & \cdots & \vdots\\
E_{N-1,0}(z^N) & E_{N-1,1}(z^N) & \cdots & E_{N-1,N-1}(z^N)
\end{array}\right]}_{\bold{E}(z^N)}
\underbrace{\left[\begin{array}{c} 1 \\ [2pt] z^{-1} \\ [2pt] \vdots \\ [2pt] z^{-(N-1)}\end{array}\right]}_{\bold{e}(z)}
$

which we can write as

$\displaystyle \bold{h}(z) = \bold{E}(z^N)\bold{e}(z).
$

Similarly, expand the synthesis filters in a Type II polyphase decomposition:

$\displaystyle F_k(z) = \sum_{l=0}^{N-1} z^{-(N-l-1)}R_{lk}(z^N)
$

or

$\displaystyle \underbrace{\left[\begin{array}{c} F_0(z) \\ [2pt] F_1(z) \\ [2pt] \vdots \\ [2pt] F_{N-1}(z)\end{array}\right]^T}_{\bold{f}^T(z)} =
\underbrace{\left[\begin{array}{c} z^{-(N-1)} \\ [2pt] z^{-(N-2)} \\ [2pt] \vdots \\ [2pt] 1\end{array}\right]^T}_{{\tilde{\bold{e}}}(z)}
\underbrace{\left[\begin{array}{cccc}
R_{0,0}(z^N) & R_{0,1}(z^N) & \cdots & R_{0,N-1}(z^N) \\
R_{1,0}(z^N) & R_{1,1}(z^N) & \cdots & R_{1,N-1}(z^N)\\
\vdots & \vdots & \cdots & \vdots\\
R_{N-1,0}(z^N) & R_{N-1,1}(z^N) & \cdots & R_{N-1,N-1}(z^N)
\end{array}\right]}_{\bold{R}(z^N)}
$

which we can write as

$\displaystyle \bold{f}^T(z) = {\tilde{\bold{e}}}(z)\bold{R}(z^N).
$

The polyphase representation can now be depicted as

\epsfig{file=eps/polyNchan.eps}

When $ R=N$ , commuting the up/downsamplers gives

\epsfig{file=eps/polyNchanfast.eps}

We call $ \bold{E}(z)$ the polyphase matrix.

As we will show below, the above simplification can be carried out more generally whenever $ R$ divides $ N$ (e.g., $ R=N/2, \ldots,
1$ ). In these cases $ \bold{E}(z)$ becomes $ \bold{E}(z^{N/R})$ and $ \bold{R}(z)$ becomes $ \bold{R}(z^{N/R})$ .



Subsections
Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download JFB.pdf
Download JFB_2up.pdf
Download JFB_4up.pdf
[Comment on this page via email]

``Multirate, Polyphase, and Wavelet Filter Banks'', by Julius O. Smith III, Scott Levine, and Harvey Thornburg, (From Lecture Overheads, Music 421).
Copyright © 2020-06-02 by Julius O. Smith III, Scott Levine, and Harvey Thornburg
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]