Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Sufficient Condition for Perfect Reconstruction

Above, we found that, for any integer $ 1\leq R\leq N$ which divides $ N$ , a sufficient condition for perfect reconstruction is

$\displaystyle \bold{P}(z)\mathrel{\stackrel{\mathrm{\Delta}}{=}}\bold{R}(z)\bold{E}(z) = \bold{I}_N
$

and the output signal is then

$\displaystyle {\hat x}(n) = \frac{N}{R} x(n-N+1)
$

More generally, we allow any nonzero scaling and any additional delay:
$\displaystyle \bold{P}(z)$ $\displaystyle \mathrel{\stackrel{\mathrm{\Delta}}{=}}$ $\displaystyle \bold{R}(z)\bold{E}(z) = c z^{-K}\bold{I}_N$  
    $\displaystyle \hbox{(Perfect Reconstruction Constraint)}
\protect$ (10)

where $ c\neq 0$ is any constant and $ K$ is any nonnegative integer. In this case, the output signal is

$\displaystyle {\hat x}(n) = c\frac{N}{R} x(n-N+1-K)
$

Thus, given any polyphase matrix $ \bold{E}(z)$ , we can attempt to compute $ \bold{R}(z) = \bold{E}^{-1}(z)$ :


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download JFB.pdf
Download JFB_2up.pdf
Download JFB_4up.pdf
[Comment on this page via email]

``Multirate, Polyphase, and Wavelet Filter Banks'', by Julius O. Smith III, Scott Levine, and Harvey Thornburg, (From Lecture Overheads, Music 421).
Copyright © 2020-06-02 by Julius O. Smith III, Scott Levine, and Harvey Thornburg
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]