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Upsampling and Downsampling

For the DFT, we have the Stretch Theorem (Repeat
Theorem) which relates upsampling (“stretch”) to
spectral copies (“images”) in the DFT context (length N
signals and spectra).

We also have the Downsampling Theorem (Aliasing
Theorem) for DFTs which relates downsampling to
aliasing for finite length signals and spectra.

We now look at these relationships in the DTFT case.
Thus, the signal length N is extended to infinity, and the
spectrum becomes defined continuously over the unit
circle in the z plane.
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Upsampling (Stretch)

• Diagram:

Nx y

• Basic Idea: To upsample by the integer factor N ,
insert N − 1 zeros between x[n] and x[n+1] for all n.

• Time Domain: y = StretchN(x), i.e.,

y[n] =

{

x[n/N ], N divides n

0, otherwise.

• Frequency Domain: Y = RepeatN(X), i.e.,

Y (z) = X(zN), z ∈ C

• Plugging in z = ejω, we see that the spectrum on
[−π, π) contracts by the factor N , and N images
appear around the unit circle. For N = 2, this is
depicted below:

−π π −π π
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Downsampling (Decimation)

• Diagram:

x yN

• Basic Idea: Take every N th sample.

• Time Domain: y = DownsampleN(x), i.e.,

y[n] = x[Nn], n ∈ Z

• Frequency Domain: Y = AliasN(X), i.e.,

Y (z) =
1

N

N−1∑

m=0

X
(

z
1
N e−jm

2π
N

)

, z ∈ C

Thus, the frequency axis is expanded by factor N ,
wrapping N times around the unit circle and adding.
For N = 2, two partial spectra are summed, as
indicated below:

−π π −π π

1/Ν
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Twiddle Factor Notation

In FFT terminology, W k
N denotes the kth “twiddle

factor,” where WN is a primitive N th root of unity:

WN
∆
= e−j2π/N .

The aliasing expression can therefore be written as

Y (z) =
1

N

N−1∑

m=0

X
(

z
1
N e−jm

2π
N

)

, z ∈ C

=
1

N

N−1∑

m=0

X(Wm
N z

1/N).
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Proof of Downsampling/Aliasing Relationship

DownsampleN(x)↔
1

N
AliasN(X)

or x(nN)↔ 1
N

N−1∑

m=0

X
(

ej2πm/Nz1/N
)

From the DFT case, we know this is true when x and X
are each complex sequences of length Ns, in which case y
and Y are length Ns/N . Thus,

x(nN)↔ Y (ωkN) =
1

N

N−1∑

m=0

X

(

ωk +
2π

N
m

)

, k ∈
[

0,
Ns

N

)

where we have chosen to keep frequency samples ωk in
terms of the original frequency axis prior to
downsampling, i.e., ωk = 2πk/Ns for both X and Y .
This choice allows us to easily take the limit as Ns →∞
by simply replacing ωk by ω:

x(nN)↔ Y (ωN) =
1

N

N−1∑

m=0

X

(

ω +
2π

N
m

)

, ω ∈
[

0,
2π

N

)

Replacing ω by ω′ = ωN and converting to z-transform
notation X(z) instead of Fourier transform notation
X(ω), with z = ejω

′
, yields the final result.
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Example: Downsampling by 2

As an example, when N = 2, y[n] = x[2n], and

(since W2
∆
= e−j2π/2 = −1)

Y (z) =
1

2

[

X
(

W 0
2 z

1/2
)

+X
(

W 1
2 z

1/2
)]

=
1

2

[

X
(

e−j2π0/2z1/2
)

+X
(

e−j2π1/2z1/2
)]

=
1

2

[

X
(

z1/2
)

+X
(

−z1/2
)]

=
1

2
[Stretch2(X) + Stretch2 (Shiftπ(X))]

Example: Upsampling by 2

When N = 2, y = [x0, 0, x1, 0, . . .], and

Y (z) = X(z2) = Repeat2(X)
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Filtering and Downsampling

Because downsampling by N will cause aliasing for any
frequencies in the original signal above |ω| > π/N , the
input signal must first be lowpass filtered.

H(z) N

The lowpass filter h[n] is an FIR filter of length M with a
cutoff frequency of π/N . Let’s draw the FIR filter h in
direct form:

y[n]h(0)

z-1

h(1)

h(2)

h(M-1)

z-1

z-1

x[n]
N
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• Note that we do not need N − 1 out of every N
samples due to the N : 1 downsampler.

• Commute the downsampler through the adders inside
the FIR filter:

h(0)

h(1)

h(2)

h(M-1)

N

N

N

N

z-1

z-1

z-1

x[n] y[n]

• The multipliers are now running at 1/N times the
sampling frequency of the input signal, x[n].
This reduces the computation requirements by 1/N .

• The downsampler outputs are called polyphase signals

• This is a summed polyphase filter bank in which each
“subphase filter” is a constant scale factor h(m).
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• Interpretation:
– serial to parallel conversion
from a stream of scalar samples x[n]
to a sequence of length M buffers every N
samples, followed by

– a dot product of each buffer with h(0 :M − 1)

• For N =M , the overall system is equivalent to a
round-robin demultiplexor, with a different gain h(m)
for each output, followed by an M -sample summer
which adds the “de-interleaved” signals together:

running sum

x[n]

Length M

h(M − 1)

h(1)

h(0)

y[n]
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Polyphase Processing (Anti-Aliasing Filter)

• Subphase 0,
x(nN) |∞n=0 = [x0, xN , x2N , . . .]

is scaled by h(0)

• Subphase 1,
x(nN + 1) |∞n=0 = [x1, xN+1, x2N+1, . . .]

is scaled by h(1)

• · · ·
• Subphase m,

x(nN +m) |∞n=0 = [xm, xN+m, x2N+m, . . .]

is scaled by h(m).
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Polyphase Filtering

In multirate signal processing, it is often fruitful to split a
signal or filter into its polyphase components.

Let’s look at the case N = 2:

• Begin with the filter

H(z) =

∞∑

n=−∞
h(n)z−n

• Separate the even and odd terms:

H(z) =

∞∑

n=−∞
h(2n)z−2n + z−1

∞∑

n=−∞
h(2n + 1)z−2n

• Define the polyphase component filters:

E0(z) =

∞∑

n=−∞
h(2n)z−n

E1(z) =

∞∑

n=−∞
h(2n + 1)z−n

E0(z) and E1(z) are the polyphase components of
the polyphase decomposition of H(z) for N = 2.
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• Now write H(z) as the sum of the odd and even
terms:

H(z) = E0(z
2) + z−1E1(z

2)

Example Polyphase Decomposition into 2
Channels

As a simple example, consider

H(z) = 1 + 2z−1 + 3z−2 + 4z−3.

Then the even and odd terms are, respectively,

E0(z) = 1 + 3z−1

E1(z) = 2 + 4z−1

And so H(z) can be written as the sum of the following
two polyphase components:

E0(z
2) = 1 + 3z−2

z−1E1(z
2) = 2z−1 + 4z−3

Polyphase Decomposition into N Channels

For the general case of arbitrary N , the basic idea is to
decompose x[n] into its periodically interleaved
subsequences:
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-1-2-3-4-5-6 0 1 2 3 4 5 6

e0

e2
e1

The polyphase decomposition into N channels is given by

H(z) =

N−1∑

l=0

z−lEl(z
N)

where the subphase filters are

El(z) =

∞∑

n=−∞
el(n)z

−n, l = 0, 1, . . . , N − 1,

with

el(n)
∆
= h(Nn + l). (lth subphase filter)

The signal el(n) can be obtained by passing h(n)
through an advance of l samples, followed by
downsampling by the factor N :

Nzl
h(n) el(n)
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Three-Channel Polyphase Decomposition and
Reconstruction

For N = 3, we have the following system diagram:

3

3

3

3

3

3

H(z)H(z)

E0(z)

E1(z)

E2(z)z2

z z−1

z−2
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Type II Polyphase Decomposition

The preceding polyphase decomposition of H(z) into N
channels

H(z) =

N−1∑

l=0

z−lEl(z
N)

can be termed a “Type I” polyphase decomposition.

In the “Type II”, or reverse polyphase decomposition, the
powers of z progress in the opposite direction:

H(z) =

N−1∑

l=0

z−(N−l−1)Rl(z
N).

We will see later that we need Type I for analysis filters
and Type II for synthesis filters in a “perfect
reconstruction filter bank”.
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Filtering and Downsampling, Revisited

As another example of polyphase filtering, we return to
the previous example about downsampling and filtering.
This time,

• Let the FIR lowpass filter h[n] be of length
M = LN,L ∈ Z

• The N polyphase filters, el[n], are each length L.

• Recall, H(z) = E0(z
N) + z−1E1(z

N) + z−2E2(z
N) +

· · · + z−(N−1)EN−1(zN):

N
y[n]

E0(zN)

E1(zN)

E2(zN)

EM-1(zN)

z-1

z-1

z-1

x[n]
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• Now commute the N : 1 downsampler through the
adders and through the upsampled polyphase filters,
El(z

N):

E0(z)

E1(z)

E2(z)

EN-1(z)

y[n]

z-1

z-1

z-1

x[n]
N

N

N

N

Commuting the downsampler through the subphase
filters El(z

N) to get El(z) is an example of a
“multirate noble identity”.
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Multirate Noble Identities

Downsamplers and upsamplers are linear, time-varying
operators. Therefore, operation order is very important.

H(z) H(z
N
)N N

H(z) N N H(z
N
)

Multirate noble identities

It is also important to note that adders or multipliers
(any memoryless operators) can commute across
downsamplers and upsamplers:

Nk

k

k

k

N

N
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Critically Sampled Perfect
Reconstruction Filter Banks

• A perfect reconstruction (PR) filter bank is any filter
bank whose reconstruction is the original signal,
possibly delayed, and possibly scaled by a constant.

• In this context, critical sampling (also called
“maximal downsampling”) means that the
downsampling factor is the same as the number of
filter channels. For the STFT, this implies
R =M = N (with M > N for Portnoff windows).

• The short-Time Fourier transform (STFT) is a PR
filter bank whenever the constant-overlap-add
(COLA) condition is met by the analysis window w
and the hop size R. However, only the rectangular
window case with no zero-padding is critically sampled
(OLA hop size = FBS downsampling factor = N).

• Advanced audio compression algorithms (“perceptual
audio coding”) are based on critically sampled filter
banks, for obvious reasons.

• Important Point: We normally do not require
critical sampling for audio analysis, effects, and music
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applications. We normally only need it when
compression is a requirement.

Two-Channel Critically Sampled Filter Banks

Let’s begin with a simple two-channel case, with lowpass
analysis filter H0(z), highpass analysis filter H1(z),
lowpass synthesis filter F0(z), and highpass synthesis
filter F1(z):

0(z) 2

1(z)

0 0

2
1 1

2
0

2
1

0(z)

1(z)

x(n)x(n)

x

x

(n)

(n)

(n)(n)

(n)(n)

y

y

v

v

H

H

F

F

The outputs of the two analysis filters are then

Xk(z) = Hk(z)X(z), k = 0, 1

After downsampling, the signals become

Vk(z) =
1

2

[

Xk(z
1/2) +Xk(−z1/2)

]

, k = 0, 1

After upsampling, the signals become

Yk(z) = Vk(z
2) =

1

2
[Xk(z) +Xk(−z)]

=
1

2
[Hk(z)X(z) +Hk(−z)X(−z)], k = 0, 1
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After substitutions and rearranging, the output x̂ is a
filtered replica plus an aliasing term:

X̂(z) =
1

2
[H0(z)F0(z) +H1(z)F1(z)]X(z)

+
1

2
[H0(−z)F0(z) +H1(−z)F1(z)]X(−z)

(Filter Bank Reconstruction) (1)

We require the second term (the aliasing term) to be
zero for perfect reconstruction. This is arranged if we set

F0(z) = H1(−z)
F1(z) = −H0(−z)

(Aliasing Cancellation Constraints) (2)

Thus,

• The synthesis lowpass filter F0(z) is the rotation by π
of the analysis highpass filter H1(z) on the unit circle.
If H1(z) is highpass, cutting off at ω = π/2, then
F0(z) will be lowpass, cutting off at π/2.

• The synthesis highpass filter F1(z) is the negative of
the π-rotation of the analysis lowpass filter H0(z).

Note that aliasing is completely canceled by this choice of
synthesis filters F0, F1, for any choice of analysis filters
H0, H1.

21

For perfect reconstruction, we additionally need

c = H0(z)F0(z) +H1(z)F1(z)

(Filtering Cancellation Constraint) (3)

where c = Ae−jωD is any constant A > 0 times a
linear-phase term corresponding to D samples of delay.

Choosing F0 and F1 to cancel aliasing,

c = H0(z)H1(−z)−H1(z)H0(−z)
(Filtering and Aliasing Cancellation) (4)

Perfect reconstruction thus also imposes a constraint on
the analysis filters, which is of course true for any
band-splitting filter bank.

Let H̃ denote H(−z). Then both constraints can be
expressed in matrix form as

[
H0 H1

H̃0 H̃1

] [
F0

F1

]

=

[
c

0

]
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Amplitude-Complementary 2-Channel Filter Bank

Perhaps the most natural choice of analysis filters for our
two-channel, critically sampled filter bank, is an
amplitude-complementary lowpass/highpass pair, i.e.,

H1(z) = 1−H0(z)

where we impose the unity dc gain constraint H0(1) = 1.

Amplitude-complementary thus means constant
overlap-add (COLA) on the unit circle in the z plane.

Plugging the COLA constraint into the Filtering and
Aliasing Cancellation constraint (4) gives

c = H0(z)[1−H0(−z)]− [1−H0(z)]H0(−z)
= H0(z)−H0(−z) ←→

Aδ(n−D) = h0(n)− (−1)nh0(n)

=

{

0, n even

2h0(n), n odd

• Even-indexed terms of the impulse response are
unconstrained, since they subtract out in the
constraint.

• For perfect reconstruction, exactly one odd-indexed
term must be nonzero in the lowpass impulse
response h0(n). The simplest choice is h0(1) 6= 0.
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• Thus, the lowpass-filter impulse response can be
anything of the form

h0 = [h0(0),h0(1), h0(2), 0, h0(4), 0, h0(6), 0, . . .]

or

h0 = [h0(0), 0, h0(2),h0(3), h0(4), 0, h0(6), 0, . . .]

etc.

• The corresponding highpass-filter impulse response is

h1(n) = δ(n)− h0(n).

• The first example above corresponds to the
highpass-filter

h1 = [1−h0(0),−h0(1),−h0(2), 0,−h0(4), 0,−h0(6), 0, . . .]
etc.

The above class of amplitude-complementary filters can
be characterized as follows:

H0(z) = E0(z
2) + h0(o)z

−o, E0(1) + h0(o) = 1, o odd

H1(z) = 1−H0(z) = 1− E0(z
2)− h0(o)z−o

In summary, we have shown that an
amplitude-complementary lowpass/highpass analysis filter
pair yields perfect reconstruction (aliasing and filtering
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cancellation) when there is exactly one odd-indexed term
in the impulse response of h0(n).

Problem:

• E0(z
2) repeats twice around the unit circle.

• Since we assume real coefficients, the frequency
response, E0(e

j2ω) is magnitude-symmetric about
ω = π/2 as well as π.

• This is not good since we only have one degree of
freedom, h0(o)z

−o, with which we can break the π/2
symmetry to reduce the high-frequency gain and/or
boost the low-frequency gain.

• In other words, this class of filters cannot be expected
to give us high quality lowpass or highpass behavior.

To enable the use of high-quality lowpass and highpass
channel filters, we must relax the
amplitude-complementary constraint (and/or filtering
cancellation and/or aliasing cancellation) and find
another approach.
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Haar Example

Before we leave this case (amplitude-complementary,
two-channel, critically sampled, perfect reconstruction
filter banks), let’s see what happens when H0(z) is the
simplest possible lowpass filter having unity dc gain, i.e.,

H0(z) =
1

2
+

1

2
z−1

This case is obtained above by setting E0(z
2) = 1/2,

o = 1, and h0(1) = 1/2.

The polyphase components of H0(z) are clearly

E0(z
2) = E1(z

2) = 1/2.

Choosing H1(z) = 1−H0(z) and choosing F0(z) and
F1(z) for aliasing cancellation, the four filters become

H0(z) =
1

2
+

1

2
z−1 = E0(z

2) + z−1E1(z
2)

H1(z) = = 1−H0(z) =
1

2
− 1

2
z−1 = E0(z

2)− z−1E1(z
2)

F0(z) = H1(−z) =
1

2
+

1

2
z−1 = H0(z)

F1(z) = −H0(−z) = −
1

2
+

1

2
z−1 = −H1(z)
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Thus, both the analysis and reconstruction filter banks
are scalings of the familiar Haar filters (“sum and
difference” filters (1± z−1)/

√
2).

The frequency responses are

H0(e
jω) = F0(e

jω) =
1

2
+

1

2
e−jω = e−j

ω
2 cos

(ω

2

)

H1(e
jω) = −F0(e

jω) =
1

2
− 1

2
e−jω = je−j

ω
2 sin

(ω

2

)

which are plotted below:
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Two−Channel Haar Filter Bank Frequency Response

|H
0
(ω T)|=cos(ω T/2)

|H
1
(ω T)|=sin(ω T/2)

27

Polyphase Haar Example

Let’s look at the polyphase representation for this
example. Starting with the filter bank and its
reconstruction,

0(z) 2

1(z)

0 0

2
1 1

2
0

2
1

0(z)

1(z)

x(n)x(n)

x

x

(n)

(n)

(n)(n)

(n)(n)

y

y

v

v

H

H

F

F

the polyphase decomposition of H0(z) is

H0(z) = E0(z
2) + z−1E1(z

2) =
1

2
+

1

2
z−1

Thus, E0(z
2) = E1(z

2) = 1/2, and therefore

H1(z) = 1−H0(z) = E0(z)− z−1E1(z)

We may derive polyphase synthesis filters as follows:

X̂(z) = [F0(z)H0(z) + F1(z)H1(z)]X(z)

=

[(
1

2
+

1

2
z−1

)

H0(z) +

(

−1
2
+

1

2
z−1

)

H1(z)

]

=
1

2

{
[H0(z)−H1(z)] + z−1 [H0(z) +H1(z)]

}
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The polyphase representation of the filter bank and its
reconstruction can now be drawn as below:

- x̂(n)

x(n)

-

↑2

↓2

E0(z
2)

E1(z
2)

E1(z
2)

z−1

↓2

↑2 E0(z
2)

z−1

x1(n)

x0(n)

Notice that the reconstruction filter bank is formally the
transpose of the analysis filter bank.

Commuting the downsamplers (by the noble identities),
we obtain

x(n)

x̂(n)- -

z−1

E0(z)

E1(z) E0(z)↓2

↓2
z−1

↑2E1(z)

↑2

Since E0(z) = E1(z) = 1/2, this is simply the OLA form
of an STFT filter bank for N = 2, with
N =M = R = 2, and rectangular window
w = [1/2, 1/2]. That is, the DFT size, window length,
and hop size are all 2, and both the DFT and its inverse
are simply sum-and-difference operations.
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Quadrature Mirror Filterbanks (QMF)

The well studied subject of Quadrature Mirror Filters
(QMF) is entered by imposing the following symmetry
constraint on the analysis filters:

H1(z) = H0(−z) (QMF Symmetry Constraint) (5)

That is, the filter for channel 1 is constrained to be a
π-rotation of filter 0 along the unit circle. In the time
domain, h1(n) = (−1)nh0(n), i.e., all odd-index
coefficients are negated.

Two-channel QMFs have been around since at least 1976
(see Croisier et al. in Music 421 Citations), and appear to
be the first critically sampled perfect reconstruction filter
banks.

If H0 is a lowpass filter cutting off near ω = π/2 (as is
typical), then H1 is a complementary highpass filter. The
exact cut-off frequency can be adjusted along with the
roll-off rate to to provide a maximally constant
frequency-response sum.

Historically, the term QMF applied only to two-channel
filter banks having the QMF symmetry constraint (5).
Today, the term “QMF filter bank” may refer to more
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general PR filter banks with any number of channels and
not obeying (5).

Combining the QMF symmetry constraint with the
aliasing-cancellation constraints, given by

F0(z) = H1(−z) = H0(z)

F1(z) = −H0(−z) = −H1(z),

the perfect reconstruction requirement reduces to

constant = H0(z)F0(z) +H1(z)F1(z) = H2
0(z)−H2

0(−z)
(QMF Perfect Reconstruction Constraint) (6)

Now, all four filters are determined by H0(z).

It is easy to show using the polyphase representation of
H0(z) (see Vaidyanathan) that the only causal FIR QMF
analysis filters yielding exact perfect reconstruction are
two-tap FIR filters of the form

H0(z) = c0z
−2n0 + c1z

−(2n1+1)

H1(z) = c0z
−2n0 − c1z−(2n1+1)

where c0 and c1 are constants, and n0 and n1 are integers.

• Only weak channel filters are available in the QMF
case (H1(z) = H0(−z)), as we saw in the
amplitude-complementary case.
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• On the other hand, very high quality IIR solutions are
possible. See Vaidyanathan for details (pp. 201–204).

• In practice, approximate “pseudo QMF” filters are
common, which only give approximate perfect
reconstruction. We’ll return to this topic later.

The Haar filters, which we saw gave perfect
reconstruction in the amplitude-complementary case, are
also examples of a QMF filter bank:

H0(z) = 1 + z−1

H1(z) = 1− z−1

In this example, c0 = c1 = 1, and n0 = n1 = 0.

Linear Phase Quadrature Mirror Filter Banks

It is generally desirable to use linear phase filters
whenever possible in audio work. This is because linear
phase filters delay all frequencies by equal amounts.

A filter phase response is linear in ω whenever its impulse
response h0(n) is symmetric, i.e.,

h0(L− n) = h0(n)

in which case the frequency response can be expressed as

H0(e
jω) = e−jωN/2

∣
∣H0(e

jω)
∣
∣
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Substituting this into the QMF perfect reconstruction
constraint (6) gives

constant = e−jωN
[
∣
∣H0(e

jω)
∣
∣
2 − (−1)N

∣
∣
∣H0(e

j(π−ω)
∣
∣
∣

2
]

When N is even, the right hand side of the above
equation is forced to zero at ω = π/2. Therefore, we will
only consider odd N , for which the perfect reconstruction
constraint reduces to

constant = e−jωN
[
∣
∣H0(e

jω)
∣
∣
2
+
∣
∣
∣H0(e

j(π−ω)
∣
∣
∣

2
]

We see that perfect reconstruction is obtained in the
linear-phase case whenever the analysis filters are power
complementary. Since FIR QMF filters are constrained to
the two-tap case, this is best accomplished using IIR
filters. See Vaidyanathan for details.
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Conjugate Quadrature Filters (CQF)

A class of causal, FIR, two-channel, criticially sampled,
exact perfect-reconstruction filter-banks is the set of
so-called Conjugate Quadrature Filters (CQF).

In the z-domain, the CQF relationships are

H1(z) = z−(L−1)H0(−z−1)
In the time domain, the analysis and synthesis filters are
given by

h1[n] = −(−1)nh0[L− 1− n]
f0[n] = h0[L− 1− n]
f1[n] = −(−1)nh0(n) = −h1(L− 1− n)

That is, f0 = Flip(h0) for the lowpass channel, and the
highpass channel filters are a modulation of their lowpass
counterparts by (−1)n.

• Again, all four analysis and synthesis filters are
determined by the lowpass analysis filter H0(z).

• It can be shown that this is an orthogonal filter bank.
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• The analysis filters H0(z) and H1(z) are power
complementary, i.e.,
∣
∣H0e

jω
∣
∣
2
+
∣
∣H1e

jω
∣
∣
2
= 1 (Power Complementary)

or

H̃0(z)H0(z)+H̃1(z)H1(z) = 1 (Power Complementary)

where H̃0(z)
∆
= H0(z

−1) denotes the paraconjugate
of H0(z) (for real filters H0). The paraconjugate is
the analytic continuation of H0(ejω) from the unit
circle to the z plane.

• Moreover, the analysis filters H0(z) are power
symmetric, e.g.,

H̃0(z)H0(z)+H̃0(−z)H0(−z) (Power Symmetric)

• The power symmetric case was introduced by Smith
and Barnwell in 1984.
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With the CQF constraints, (1) reduces to

X̂(z) =
1

2
[H0(z)H0(z

−1)+H0(−z)H0(−z−1)]X(z) (7)

Let P (z) = H0(z)H0(−z), such that H0(z) is a spectral
factor of the half-band filter P (z) (i.e., P (ejω) is a
nonnegative power response which is lowpass, cutting off
near ω = π/4). Then, (7) reduces to

X̂(z) =
1

2
[P (z) + P (−z)]X(z) = −z−(L−1)X(z) (8)

• The problem of the PR filter design has been reduced
to designing one half-band filter, P (z).

• It can be shown that any half-band filter can be
written in the form p[2n] = δ[n]. That is, all non-zero
even-idexed values of p[n] are set to zero.

A simple design of an FIR half-band filter would be to
window a sinc function:

p[n] =
sin[πn/2]

πn/2
w[n] (9)

where w[n] is any suitable window, such as the Kaiser
window.
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• Note that as a result of (7), the CQF filters are power
complementary. That is, they satisfy:

∣
∣H0(e

jω)
∣
∣
2
+
∣
∣H1(e

jω)
∣
∣
2
= 2

• Also note that the filters H0 and H1 are not linear
phase.

• It can be shown that there are no two-channel perfect
reconstruction filter banks that have all three of the
following characteristics (except for the Haar filters):

– FIR

– orthogonality

– linear phase

In this design procedure, we have chosen to satisfy
the first two and give up the third.

• By relaxing “orthogonality” to “biorthogonality”, it
becomes possible to obtain FIR linear phase filters in
a critically sampled, perfect reconstruction filter bank.
(See later section on Wavelet filter banks.)
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Orthogonal Two-Channel Filter Banks

Recall the reconstruction equation for the two-channel,
critically sampled, perfect-reconstruction filter-bank:

X̂(z) =
1

2
[H0(z)F0(z) +H1(z)F1(z)]X(z)

+
1

2
[H0(−z)F0(z) +H1(−z)F1(z)]X(−z)

This can be written in matrix form as

X̂(z) =
1

2

[
F0(z)

F1(z)

]T [
H0(z) H0(−z)
H1(z) H1(−z)

] [
X(z)

X(−z)

]

where the above 2× 2 matrix, Hm(z), is called the alias
component matrix (or analysis modulation matrix). If

H̃m(z)Hm(z) = 2I

where H̃m(z)
∆
= HT

m(z
−1) denotes the paraconjugate of

Hm(z), then the alias component (AC) matrix is lossless,
and the (real) filter bank is orthogonal.

It turns out orthogonal filter banks give perfect
reconstruction filter banks for any number of channels.

Orthogonal filter banks are also called paraunitary filter
banks, which we’ll study shortly in polyphase form.

The AC matrix is paraunitary if and only if the polyphase
matrix is paraunitary. (See Vaidyanathan.)
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Perfect Reconstruction Filter Banks

We now consider filter banks with an arbitrary number of
channels, and ask under what conditions do we obtain a
perfect reconstruction filter bank?

Polyphase analysis will give us the answer readily.

Let’s begin with the N -channel filter bank below:

x(n)

x̂(n)

↑RH0(z)

↑R

↓R

HN−1(z)

F1(z)↑RH1(z)

↓R FN−1(z)

↓R F0(z)

• The downsampling factor is R ≤ N .

• For critical sampling, R = N .
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The next step is to expand each analysis filter Hk(z) into
its N -channel “Type 1” polyphase representation:

Hk(z) =

N−1∑

l=0

z−lEkl(z
N)

or







H0(z)

H1(z)
...

HN−1(z)








︸ ︷︷ ︸

h(z)

=








E0,0(z
N) E0,1(z

N) · · · E0,N−1(zN)
E1,0(z

N) E1,1(z
N) · · · E1,N−1(zN)

...
... · · · ...

EN−1,0(zN) EN−1,1(zN) · · · EN−1,N−1(zN)








︸ ︷︷ ︸

E(zN )








1

z−1

...

z−(N−1)








︸ ︷︷ ︸

e(z)

which we can write as

h(z) = E(zN)e(z).

Similarly, expand the synthesis filters in a Type II
polyphase decomposition:

Fk(z) =

N−1∑

l=0

z−(N−l−1)Rlk(z
N)

or







F0(z)

F1(z)
...

FN−1(z)








T

︸ ︷︷ ︸

fT (z)

=








z−(N−1)

z−(N−2)

...

1








T

︸ ︷︷ ︸

ẽ(z)








R0,0(z
N) R0,1(z

N) · · · R0,N−1(zN)
R1,0(z

N) R1,1(z
N) · · · R1,N−1(zN)

...
... · · · ...

RN−1,0(zN) RN−1,1(zN) · · · RN−1,N−1(zN)








︸ ︷︷ ︸

R(zN )

which we can write as

fT (z) = ẽ(z)R(zN).
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The polyphase representation can now be depicted as

x̂(n)

x(n)

z−1

↓R

Rb(z
N)E(zN)

↑R

↓R

↓R

↑R

↑R

z−1 z−1

z−1

z−1

z−1

When R = N , commuting the up/downsamplers gives

x̂(n)

x(n)

↑N

↓N

↑N↓N

z−1

z−1

z−1

↓N

z−1

z−1

z−1

Rb(z)E(z)

↑N
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We call E(z) the polyphase matrix.

As we will show below, the above simplification can be
carried out more generally whenever R divides N (e.g.,
R = N/2, . . . , 1). In these cases E(z) becomes E(zN/R)
and R(z) becomes R(zN/R).
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Simple Examples of Perfect Reconstruction

If we can arrange to have

R(z)E(z) = IN

then the filter bank will reduce to the simple system
below:

x(n)

x̂(n)

↑N

↑N

z−1

z−1

z−1z−1

↓N

↓N

↓N

↑N

N

z−1

z−1

When R = N , we have a simple parallelizer/serializer (or
de-multiplexor/multiplexor, or
de-interleaver/re-interleaver), which is
perfect-reconstruction by inspection:

• Think of the input samples x(n) as “filling” a length
N − 1 delay line over N − 1 sample clocks.
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• At time 0, the downsamplers and upsamplers “fire”,
transferring x(0) (and N − 1 zeros) from the delay
line to the output delay chain, summing with zeros.

• Over the next N − 1 clocks, x(0) makes its way
toward the output, and zeros fill in behind it in the
output delay chain.

• Simultaneously, the input “buffer” (delay line) is
being filled with samples of x(n).

• At time N − 1, x(0) makes it to the output.

• At time N , the downsamplers fire again, transferring
a length N buffer [x(1 : N)] to the upsamplers.

• On the same clock pulse, the upsamplers also fire,
transferring N samples to the output delay chain.

• The bottom-most sample [x(n−N + 1) = x(1)] goes
out immediately at time N .

• Over the next N − 1 sample clocks, the length N − 1
output buffer will be “drained” and refilled by zeros.

• Simultaneously, the input buffer will be replaced by
new samples of x(n).

• At time 2N , the downsamplers and upsamplers fire,
and the process goes on, repeating with period N .
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The output of the N -way parellelizer/serializer is
therefore

x̂(n) = x(n−N + 1)

and we have perfect reconstruction.

Sliding Polyphase Filter Bank

When R = 1, there is no downsampling or upsampling,
and the system further reduces to the case below:

x̂(n)

x(n)
z−1

z−1

z−1

N

z−1

z−1

z−1

Working backward along the output delay chain, the
output sum can be written as

X̂(z) =
[

z−0z−(N−1) + z−1z−(N−2) + z−2z−(N−3) + · · ·

+z−(N−2)z−1 + z−0z−(N−1)
]

X(z)

= Nz−(N−1)X(z)
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Thus, when R = 1, the output is

x̂(n) = Nx(n−N + 1)

and we again have perfect reconstruction.

Hopping Polyphase Filter Bank

When 1 < R < N and R divides N , we have, by a
similar analysis,

x̂(n) =
N

R
x(n−N + 1)

which is again perfect reconstruction.

Note the built-in overlap-add when R < N .

Sufficient Condition for Perfect Reconstruction

Above, we found that, for any integer 1 ≤ R ≤ N which
divides N , a sufficient condition for perfect
reconstruction is

P(z)
∆
= R(z)E(z) = IN

and the output signal is then

x̂(n) =
N

R
x(n−N + 1)
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More generally, we allow any nonzero scaling and any
additional delay:

P(z)
∆
= R(z)E(z) = cz−KIN

(Perfect Reconstruction Constraint) (10)

where c 6= 0 is any constant and K is any nonnegative
integer. In this case, the output signal is

x̂(n) = c
N

R
x(n−N + 1−K)

Thus, given any polyphase matrix E(z), we can attempt
to compute R(z) = E−1(z):

• If it is stable, we can use it to build a
perfect-reconstruction filter bank.

• However, if E(z) is FIR, R(z) will typically be IIR.

• In the next section, we will look at paraunitary filter
banks, for which R(z) is FIR and paraunitary
whenever E(z) is.
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Necessary and Sufficient Conditions for Perfect
Reconstruction

It can be shown (see Vaidyanathan ’93) that the most
general conditions for perfect reconstruction are that

R(z)E(z) = cz−K
[
0(N−L)×L z−1IN−L

IL 0L×(N−L)

]

for some constant c and some integer K ≥ 0, where L is
any integer between 0 and N − 1.

Note that the more general form of R(z)E(z) above can
be regarded as a (non-unique) square root of a vector
unit delay, since

[
0(N−L)×L z−1IN−L

IL 0L×(N−L)

]2

= z−1IN .

Thus, the general case is the same thing as

R(z)E(z) = cz−KIN .

except for some channel swapping and an extra sample of
delay in some channels.
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Polyphase View of the STFT

As a familiar special case, set

E(z) = W∗
N

where W∗
N is the DFT matrix:

W∗
N [kn] =

[

e−j2πkn/N
]

.

The inverse of this polyphase matrix is then simply the
inverse DFT matrix :

R(z) =
1

N
WN

We see that the STFT can be seen as the simple special
case of a perfect reconstruction filter bank for which the
polyphase matrix is constant. It is also unitary when
E(z) = W∗

N/
√
N and R(z) = WN/

√
N .

The channel analysis and synthesis filters are, respectively,

Hk(z) = H0(zW
k
N)

Fk(z) = F0(zW
−k
N )

where WN
∆
= e−j2π/N , as usual, and

F0(z) = H0(z) =

N−1∑

n=0

z−n ↔ [1, 1, . . . , 1]

corresponding to the rectangular window.
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Looking again at the polyphase representation of the
N -channel filter bank with hop size R, E(z) = W∗

N ,
R(z) = WN , R dividing N , we have

x̂(n)

x(n)

↑R

↓R

↓R

IDFT

z−1

z−1

z−1

DFT

z−1

z−1

z−1

↑R

↑R↓R

Thus,

The polyphase representation is an overlap-add representation

• Our analysis showed that the STFT using a
rectangular window is a perfect reconstruction filter
bank for all integer hop sizes in the set
R ∈ {N,N/2, N/3, . . . , N/N}.
• The same type of analysis can be applied to the
STFT using the other windows we’ve studied,
including Portnoff windows.
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Example: Polyphase Analysis of the STFT with
50% Overlap, Zero-Padding, and a

Non-Rectangular Window

The figure below illustrates how a window and a hop size
other than N can be introduced:

x̂(n)

x(n)

z−1

↓M2

↓M2

w(0)

w(1)

0

0

z−1

z−1

z−1

↑M2

↑M2

↑M2

IDFTNDFTN
w(M − 1)

z−1

z−1

↓M2

• The constant-overlap-add of the window w(n) is
implemented in the synthesis delay chain (which is
technically the transpose of a tapped delay line).

• The downsampling factor and window must be
selected together to give constant overlap-add,
independent of the choice of polyphase matrices E(z)
and R(z) (shown here as the DFT and IDFT).
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Example: Polyphase Analysis of the Weighted
Overlap Add Case: 50% Overlap, Zero-Padding,

and a Non-Rectangular Window

We may convert the previous example to a weighted
overlap-add (WOLA) filter bank by replacing each w(m)
by

√

w(m) and introducing these gains also between the
IDFT and upsamplers:

x(n)

x̂(n)

DFTN

z−1

z−1

z−1

↓M
2

↓M
2

↓M
2

0

0

√

w(1)

√

w(0)

0

0

z−1

z−1

√

w(1)

z−1

√

w(M − 1)
√

w(M − 1)

↑M
2

↑M
2

↑M
2

IDFTN

√

w(0)
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Paraunitary Filter Banks

Paraunitary filter banks form an interesting subset of
perfect reconstruction (PR) filter banks:

• We saw above that we get a PR filter bank whenever
the analysis polyphase matrix E(z) times the
synthesis polyphase matrix R(z) is the identity
matrix, i.e., when

P(z)
∆
= E(z)R(z) = I

• In particular, if R(z) is the paraconjugate of E(z),
we say the filter bank is paraunitary.

So what is paraconjugation?

The short answer is that it is the generalization of the
complex conjugate transpose operation from the unit
circle to the entire z plane. A paraunitary filter bank is
therefore a generalization of an orthogonal filter bank.
Recall that an orthogonal filter bank is one in which
E(ejω) is an orthogonal (or unitary) matrix, to within a
constant scale factor, and R(ejω) is its transpose (or
Hermitian transpose).
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Lossless Filters

To motivate the idea of paraunitary filters, let’s first
review some properties of lossless filters, progressing from
the simplest cases up to paraunitary filter banks:

• A linear, time-invariant filter H(z) is said to be
lossless (or allpass) if it preserves signal energy. That
is, if the input signal is x(n), and the output signal is
y(n) = (h ∗ x)(n), then we have

∞∑

n=−∞
|y(n)|2 =

∞∑

n=−∞
|x(n)|2

In terms of the L2 signal norm ‖ · ‖2, this can be
expressed more succinctly as

‖ y ‖22 = ‖ x ‖
2
2

• Notice that only stable filters can be lossless since,
otherwise, ‖ y ‖ =∞. We further assume all filters
are causal for simplicity.

• It is straightforward to show that losslessness implies
∣
∣H(ejω)

∣
∣ = 1, ∀ω.

That is, the frequency response must have magnitude
1 everywhere on the unit circle in the z plane.
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Another way to express this is to write

H(ejω)H(ejω) = 1, ∀ω,
and this form generalizes to H̃(z)H(z) over the
entire the z plane.

• The paraconjugate of a transfer function may be
defined as the analytic continuation of the complex
conjugate from the unit circle to the whole z plane:

H̃(z)
∆
= H(z−1)

where H(z) denotes complex conjugation of the
coefficients only of H(z) and not the powers of z.
For example, if H(z) = 1 + jz−1, then
H(z) = 1− jz−1. We can write, for example,

H(z)
∆
= H (z)

in which the conjugation of z serves to cancel the
outer conjugation.

We refrain from conjugating z in the definition of the
paraconjugate becase z is not analytic in the
complex-variables sense. Instead, we invert z, which
is analytic, and which reduces to complex conjugation
on the unit circle.

The paraconjugate may be used to characterize
allpass filters as follows:
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• A causal, stable, filter H(z) is allpass if and only if

H̃(z)H(z) = 1

Note that this is equivalent to the previous result on
the unit circle since

H̃(ejω)H(ejω) = H(1/ejω)H(ejω) = H(ejω)H(ejω)

• To generalize lossless filters to the multi-input,
multi-output (MIMO) case, we must generalize
conjugation to MIMO transfer function matrices:

– A p× q transfer function matrix H(z) is lossless if
it is stable and its frequency-response matrix
H(ejω) is unitary. That is,

H∗(ejω)H(ejω) = Iq

for all ω, where Iq denotes the q × q identity
matrix, and H∗(ejω) denotes the Hermitian
transpose (complex-conjugate transpose) of
H(ejω):

H∗(ejω)
∆
= HT (ejω)

– Note that H∗(ejω)H(ejω) is a q × q matrix
product of a q × p times a p× q matrix. If q > p,
then the rank must be deficient. Therefore, we
must have p ≥ q. (There must be at least as
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many outputs as there are inputs, but it’s ok to
have extra outputs.)

– A lossless p× q transfer function matrix H(z) is
paraunitary, i.e.,

H̃(z)H(z) = Iq

Thus, every paraunitary matrix transfer function is
unitary on the unit circle for all ω. Away from the
unit circle, paraunitary H(z) is the unique analytic
continuation of unitary H(ejω).

Lossless Filter Examples

• The simplest lossless filter is a unit-modulus gain

H(z) = ejφ

where φ can be any phase value. In the real case φ
can only be 0 or π, hence H(z) = ±1.
• A lossless FIR filter can only consist of a single
nonzero tap:

H(z) = ejφz−K

for some fixed integer K, where φ is again some
constant phase, constrained to be 0 or π in the
real-filter case. We consider only causal filters here,
so K ≥ 0.

57

• Every finite-order, single-input, single-output (SISO),
lossless IIR filter (recursive allpass filter) can be
written as

H(z) = ejφz−K
z−NÃ(z)

A(z)

where K ≥ 0,
A(z) = 1 + a1z

−1 + a2z
−2 + · · · + aNz

−N , and

Ã(z)
∆
= A(z−1). The polynomial Ã(z) can be

obtained by reversing the order of the coefficients in
A(z), conjugating them, and multiplying by zN . (The
factor z−N above serves to restore negative powers of
z and hence causality.) Such filters are generally
called allpass filters.

• The normalized DFT matrix is an N ×N order zero
paraunitary transformation. This is because the
normalized DFT matrix,
W = [W nk

N ]/
√
N, n, k = 0, . . . , N − 1, where

WN
∆
= e−j2π/N , is a unitary matrix:

W∗
√
N

W√
N

= IN
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Properties of Paraunitary Systems

Paraunitary systems are essentially multi-input,
multi-output (MIMO) allpass filters. Let H(z) denote the
p× q matrix transfer function of a paraunitary system.
Some of its properties include

• In the square case (p = q), the matrix determinant,
det[H(z)], is an allpass filter.

• Therefore, if a square H(z) contains FIR elements, its
determinant is a simple delay: det[H(z)] = z−K for
some integer K.

Properties of Paraunitary Filter Banks

An N -channel analysis filter bank can be viewed as an
N × 1 MIMO filter

H(z) =








H1(z)

H2(z)
...

HN(z)








A paraunitary filter bank must therefore obey

H̃(z)H(z) = 1
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More generally, we allow paraunitary filter banks to scale
and/or delay the input signal:

H̃(z)H(z) = cKz
−K

where K is some nonnegative integer and cK 6= 0.

We can note the following properties of paraunitary filter
banks:

• The synthesis filter bank is simply the paraconjugate
of the analysis filter bank:

F(z) = H̃(z)

That is, since the paraconjugate is the inverse of a
paraunitary filter matrix, it is exactly what we need
for perfect reconstruction.

• The channel filters Hk(z) are power complementary :
∣
∣H1(e

jω)
∣
∣
2
+
∣
∣H2(e

jω)
∣
∣
2
+ · · · +

∣
∣HN(e

jω)
∣
∣
2
= 1

This follows immediately from looking at the
paraunitary property on the unit circle.

• When H(z) is FIR, the corresponding synthesis filter
matrix H̃(z) is also FIR.

• When H(z) is FIR, each synthesis filter,
Fk(z) = H̃k(z), k = 1, . . . , N , is simply the Flip of
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its corresponding analysis filter Hk(z) = Hk(z):

fk(n) = hk(L− n)
where L is the filter length. (When the filter
coefficients are complex, Flip includes a complex
conjugation as well.)

This follows from the fact that paraconjugating an
FIR filter amounts to simply flipping (and
conjugating) its coefficients.

Note that only trivial FIR filters can be paraunitary in
the single-input, single-output (SISO) case. In the
MIMO case, on the other hand, paraunitary systems
can be composed of FIR filters of any order.

• FIR analysis and synthesis filters in paraunitary filter
banks have the same amplitude response.

This follows from the fact that Flip(h)↔ H, i.e.,
flipping an FIR filter impulse response h(n)
conjugates the frequency response, which does not
affect its amplitude response |H(ejω)|.
• The polyphase matrix E(z) for any FIR paraunitary
perfect reconstruction filter bank can be written as
the product of a paraunitary and a unimodular matrix.

• A unimodular polynomial matrix U(z) is any square
polynomial matrix having a constant nonzero
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determinant. For example,

U(z) =

[
1 + z3 z2

z 1

]

is unimodular. See Vaidyanathan for further details
(p. 663).

Paraunitary Examples

Consider the Haar filter bank discussed previously, for
which

H(z) =
1√
2

[
1 + z−1

1− z−1
]

The paraconjugate of H(z) is

H̃(z) =
1√
2

[
1 + z 1− z

]

so that

H̃(z)H(z) =
[
1 + z 1− z

]
[
1 + z−1

1− z−1
]

= 1

Thus, the Haar filter bank is paraunitary. This is true for
any power-complementary filter bank, since when H̃(z) is
N × 1, power-complementary and paraunitary are the
same property.

For more about paraunitary filter banks, see Chapter 6 of
Vaidyanathan.
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Modulated STFT Filter Bank

• Recall the complex Portnoff analysis bank, where
Hk(z), k = 1 . . . N are N th-band bandpass filters
related to lowpass prototype H0(z) by modulation

(e.g., Hk(z) = H0(zW
k
N), WN

∆
= e−j

2π
N ):

X(z) X(z) X0(z)X0(z)

X1(z)X1(z)

X2(z)X2(z)

Xn(ω0)

Xn(ω1)

Xn(ω2)

H0(z)

H0(z)

H0(z)

H0(z)

H1(z)

H2(z)

W 0n

N

W−1n

N

W−2n

N

W 0n

N

W 1n

N

W 2n

N

STFT

• Convolution gives

Xn(ωk) =

∞∑

m=−∞
x[m]h0[n−m]W−km

N .

This is the sliding-window STFT implementation,
where h0[n−m] is the sliding window “centered” at
time n, and Xn(ωk) is the kth DTFT bin at time n.

• After remodulating the DTFT channel outputs and
summing, we obtain perfect reconstruction of X(n)
provided H0(z) is Nyquist(N).
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• For H0(z) to be a good anti-aliasing lowpass filter, its
length must exceed the number of bins in the DTFT.
(Otherwise, the best we have is the rectangular
window, which gives only -13 dB stopband rejection.)
This means we must use a Portnoff window of some
length larger than the DFT length.

• Let the window length be L > N . In Lecture 7, it is
mentioned that we can still use a length N FFT
provided h0 is replaced by AliasNh0. I.e., it is
time-aliased down to length N .

With polyphase analysis we obtain this result, along with
an efficient FFT implementation:

Polyphase Analysis of Portnoff STFT

• Recall that the analysis filter in an STFT can be
expressed as a frequency-shift of a prototype lowpass
filter:

Hk(z) = H0(zW
k
N), k = 1, . . . , N − 1

In principle, the lowpass filter’s impulse-response can
be any length L.

• Denote the N -channel polyphase components of
H0(z) by El(z), l = 0, 1, . . . , N − 1.
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• Then by the polyphase decomposition,

H0(z) =

N−1∑

l=0

z−lEl(z
N)

Hk(z) =

N−1∑

l=0

(zW k
N)
−lEl((zW

k
N)

N)

=

N−1∑

l=0

z−lEl(z
N)W−kl

N

• Consequently,

Hk(z)X(z) =

N−1∑

l=0

z−lEl(z
N)X(z)W−kl

N





H0(z)
. . .

HN−1(z)



 =



 W−kl
N









E0(z
N)z−0X(z)
. . .

EN−1(zN)z−(N−1)X(z)





• If H0(z) is a good N th-band lowpass, the subband
signals xk[n] are bandlimited to a region of width
2π/N . As a result, there is negligible aliasing when
we downsample each of the subbands by N .

• Commuting the downsamplers to get an efficient
implementation is straightforward:
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X(z)

z^-1

z^-1

X(z)

z^-1

z^-1

3

3

3

3

3

3T

F

F X0(z)

X1(z)

X2(z)

E0(z^3)

E1(z^3)

E2(z^3)

E0(z)

E1(z)

E2(z) T

F

F

• We see that the polyphase filters compute the
appropriate time-aliases of the flipped window
H0(z

−1).

• The window is hopped by N samples, but recall that
it is operating on input date time aliased by the factor
L/N , where L is the filter length. Thus, the hop size
is only a fraction of the anti-aliasing filter
impulse-response length.

Question: What familiar case do we get when
Ek(z) = 1 for all k?
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Critically Sampled STFT Filter Bank

We will now analyze the filter bank interpretation of the
STFT with hop size set to R =M = N .

The kth subband signal in the DFT filter bank can be
written as:

Xk(m) =

∞∑

n=−∞
h(mN − n)x(n)W kn

N

with WN ≡ e−j2π/N . The signal Xk(m) is regarded as a
complex sequence formed from the kth DFT bin over
time m (in frames).

Making the change of variable n = lN − r, the above
equation becomes:

Xk(m) =

N−1∑

r=0

ur(m)W kn
N (11)

with

ur(m) ≡
∞∑

l=−∞
h(mN − lN + r)x(lN − r) (12)
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Therefore, (11) can be interpreted as computing a
length-N FFT applied to the input block
[u0(m) · · · uN−1(m)]T .

Now, we’ll form a simpler representation of the sequence
ur(m). First, define the polyphase decomposition of h(n)
and x(m):

pi(m) = h(mN + i), i = 0, 1, ..., N − 1

If the filter h(n) has length M = LN , then each of its
polyphase components pr(m) has length L. Now define
the sequence xr(m)

xr(m) ≡ x(mN − r), r = 0, 1, ..., N − 1

Finally, (12) can be expressed as:

ur(m) =

∞∑

l=−∞
pr(m− l)xr(m) (13)

Thus, every input bin to the DFT is actually a
convolution between xr(m) and pi(m), the ith polyphase
filter of the lowpass prototype filter, h(n).
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• Complexity is now the cost of one full-rate
convolution with h(n) and the FFT cost.

• If M ≫ N (L≫ 1), we can keep aliasing error
within tolerable limits.

• If M = 10N (L = 10), it is possible to keep the
reconstruction error below 0.1%.

• Similar development for the synthesis DFT bank

• Notice that when the polyphase filters are scalars
(1-tap FIR filters) of unit gain, then this is simply a
DFT block transform, with a rectangular window.
The frequency response is a sinc, with poor frequency
characteristics.

• By extending the length of the polyphase filters,
L > 1, then the freqeuency characteristics of the
window can become much better.

• The window length is no longer restricted to be of the
same length as the transform.
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Relationships bewteen OLA,LOT, & ELT

• Let N be the length of the DFT (or the number of
frequency bins). N is no longer constrained to be the
same as R.

• R is the downsampling factor on each branch

• L is the length of each polyphase filter, pr(m).

• The length of the lowpass prototype filter
h(n) =M = LN

• Case 1 : critically sampled, no overlap

• R = N , the filter bank is critically sampled
• L = 1,M = N , the polyphase filters are simply
scalar multiplies
• Equivalent to a block transform
• Perfect reconstruction only if
h(n) = 1, n = 0, ...N − 1

• Case 2 : oversampled OLA of 50% overlap

• R = N
2 , the filter bank output is oversampled by 2

• L = 1,M = N , the polyphase filters are simply
scalar multiplies
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• PR requires that the prototype lowpass filter
(window) has constant overlap add in time:

∞∑

i=−∞
h(n− iR) = 1

• Case 3 : critically sampled OLA of 50% overlap

– R = N , the filter bank is critically sampled

– L = 2, the polyphase filters are two-tap FIR filters

–M = 2N , the lowpass protoype filter h(n) is twice
as long as the transform length, N

– A transform slightly different than the DFT matrix
is needed for perfect reconstruction

– The same form as the Princen-Bradley filter bank,
where h(n) = h(M − 1− n) and
h2(n + M

2 ) + h2(n) = 2

– Considered a Lapped Transform

• Case 4 : critically sampled OLA of 8:1 overlap

– Similar to Case 3, but L = 8 and thus M = 8N .

– Transform matrix is close to that of Case 3.

– The same form as the MPEG layer I,II filter bank

– Considered an Extended Lapped Transform

• How do we generate the new transform matrices in
Cases 3 & 4?
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Pseudo-QMF Cosine Modulation Filter
Bank

• Now, we want an N -channel transform with real
filters and real outputs.

• Only eliminate aliasing between adjacent bands.
Bandpass filters used in practice attenuate noise about
96dB, so neglected bands are not much of a concern.

• First, design a lowpass prototype window, h(n), with
length M = LN, L,M,N ∈ Z.

• The lowpass design is constrained to give aliasing
cancellation in neighboring subbands:

|H(ejω)|2 + |H(ej(π/N)−ω)|2 = 2, 0 < |ω| < π/2N

|H(ejω)|2 = 0, |w| > π/N

• The filter bank analysis filters hk(n) are cosine
modulations of h(n):

hk(n) = h(n)cos

[(

k +
1

2

)(

n−M − 1

2

)
π

N
+ φk

]

,

k = 0, . . . , N − 1, where the phases are restricted
according to

φk+1 − φk = (2r + 1)
π

2
again for aliasing cancellation.
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• Since it is an orthogonal filter bank, the synthesis
filters are simply the time reverse of the analysis
filters:

fk(n) = hk(M − 1− n)
• This filter bank is used in MPEG audio, layers I,II.

– N=32 bands

– M=512 taps (L=8)
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Perfect Reconstruction Cosine
Modulated Filter Banks

• By changing the phases φk, the pseudo-QMF filter
bank can yield perfect reconstruction:

φk =

(

k +
1

2

)

(L + 1)
π

2

where L is the length of the polyphase filter
(M = LN).

• If M = 2N , then this is the oddly-stacked
Princen-Bradley filter bank , and the analysis filters
are related by cosine modulations of the lowpass
prototype:

fk(n) = h(n)cos

[(

n +
N + 1

2

)(

k +
1

2

)
π

N

]

, k = 0 : N−1

• However, the length of the filters M can be any even
multiple of N :

M = LN, (L/2) ∈ Z

• L is called the overlapping factor

• These filter banks are also referred to as Extended
Lapped Transforms, when K ≥ 2.

74

MPEG Layer III Filter Bank

• Original MPEG subbands were about 687 Hz wide.

• Finer frequency resolution was needed.

• A Princen-Bradley filter bank with 12 to 36 sub-bands
is appended after each subband of the 32-channel
PQMF cosine modulated analysis filter bank.

• The number of sub-bands and window shape are
signal dependent:

– Transients use 12 subbands, which gives better
time resolution and poorer frequency resolution.

– Steady-state tones use 36 subbands, which gives
better frequency resolution and poorer time
resolution.

– The encoder generates a function called the
perceptual entropy (PE), which tells the coder
when to switch resolutions.
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Geometric Signal Theory

We will now approach filter bank derivation from a
“Hilbert space” point of view. This is the most natural
setting for the study of wavelet filter banks.

• Signals can be expanded as a linear combination of
orthonormal basis signals ϕk:

x(n) =

∞∑

k=−∞
〈ϕk, x〉ϕk(n)

n ∈ (−∞,∞), x(n), ϕk(n) ∈ C
where the coefficient of projection of x onto ϕk is
given by

〈ϕk, x〉 ∆
=

∞∑

n=−∞
ϕ∗k(n)x(n) (Inner Product)

〈ϕk, ϕl〉 = δ(k − l) =
{
1, k = l
0, k 6= l

(Orthonormal)

• Signal expansion can be viewed as sum of geometric
projections of x onto {ϕk}
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x

ϕkϕ>ϕ< x, kk

Example Basis Signals

• “Natural” Basis:

ϕk
∆
= [. . . , 0, 1︸︷︷︸

kth

, 0, . . .], i.e.,

ϕk(n)
∆
= δ(n− k)

=⇒ 〈ϕk, x〉 = x(k)

x(n) =

∞∑

k=−∞
x(k)ϕk(n)

=

∞∑

k=−∞
x(k)δ(n− k) ∆

= (x ∗ δ)(n)

• Normalized DFT Basis for CN :

ϕk(n)
∆
= ejωkn/

√
N, ωk

∆
= 2πk/N, n, k ∈ [0, N−1]
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=⇒ 〈ϕk, x〉 ∆
=

1√
N

N−1∑

n=0

x(n)e−jωkn

∆
= DFTN,k(x)/

√
N

∆
= X(ωk)/

√
N

x(n) =

N−1∑

k=0

〈ϕk, x〉ϕk(n)

=
1

N

N−1∑

k=0

X(k)ejωkn

∆
= DFT−1N,n(X)
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• Normalized Fourier Transform Basis:

ϕω(t)
∆
= ejωt/

√
2π, ω, t ∈ (−∞,∞)

=⇒ 〈ϕω, x〉 =
1√
2π

∫ ∞

−∞
x(t)e−jωtdt

∆
= FTω(x)/

√
2π

∆
= X(ω)/

√
2π

x(t) =

∫ ∞

−∞
〈ϕω, x〉ϕω(t)dω

=
1

2π

∫ ∞

−∞
X(ω)ejωtdω

∆
= FT−1t (X)

• Normalized DTFT Basis:

ϕω(n)
∆
= ejωn/

√
2π, ω ∈ (−π, π], n ∈ (−∞,∞)

(Find inner product 〈ϕω, x〉 and reconstruction of
x(n) in terms of {ϕω} as an exercise.)
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• Normalized STFT Basis:

ϕmk(n)
∆
=

w(n−mR)ejωkn
∥
∥ShiftmR(w)ejωk(·)

∥
∥
=
w(n−mR)ejωkn
√∑

nw
2(n)

,

ωk = 2πk/N, k ∈ [0, N−1], n ∈ (−∞,∞), w(n) ∈ R
– Overcomplete in general

– Orthonormal when

R =M = N

(Hop size = Window length = DFT length)

w = Rectangular Window wR
=⇒ ϕmk = ShiftmN [ZeroPad∞ (ϕDFT

k )],

i.e., ϕmk(n) = ejωkn/
√
N for

mN ≤ n ≤ (m + 1)N − 1, and 0 otherwise

In this case,

〈ϕmk, x〉 =
1√
N

∞∑

n=−∞
x(n)wR(n−mN)e−jωkn

∆
= STFTN,m,k(x)/

√
N

∆
= Xm(ωk)/

√
N
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x(n) =

∞∑

m=−∞

N−1∑

k=0

〈ϕmk, x〉ϕmk(n)

=

∞∑

m=−∞
wR(n−mN)

1

N

N−1∑

k=0

Xm(ωk)e
jωkn

=

∞∑

m=−∞
ShiftmN,n

{
ZeroPad∞

[
DFT−1N (Xm)

]}

∆
= STFT−1N,n(X)

• Continuous Wavelet Transform Basis:

ϕsτ(t)
∆
=

1
√

|s|
f ∗

(
τ − t
s

)

,

τ, s, t ∈ (−∞,∞)

X(s, τ )
∆
=

1
√

|s|

∫ ∞

−∞
x(t)f

(
t− τ
s

)

dt

– s = scale parameter

– 1/
√

|s| maintains energy invariance
– X(s, τ ) = wavelet coefficients

– f (t) = mother wavelet
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– f (t) typically bandpass

– Qualitative example:

( )tf

( )42
1 t

f

� ( )22

1 t
f

t

t

t
(Mother

Wavelet)
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Wavelets

• Admissibility condition for mother wavelet ψ(t):

Cψ =

∫ ∞

−∞

|Ψ(ω)|2
|ω| dω <∞

• Given sufficient decay, this reduces to Ψ(0) = 0
(mother wavelet must be zero-mean)

• Morlet Wavelet:

ψ(t)
∆
=

1√
2π
e−jω0te−t

2/2

←→
Ψ(ω) = e−(ω−ω0)

2/2

– Gaussian-windowed complex sinusoid

– Scaled so that ‖ψ ‖ = 1

– Center frequency ω0 typically chosen so that
second peak is half of first
=⇒ ω0 = π

√

2/ln2 ≈ 5.336

– Ψ(0) ≈ 7× 10−7 ≈ 0 (close enough)

• Wavelet-based analysis called a scalogram
(analogous to STFT “spectrogram”)
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Discrete Wavelet Transform

Transform (filterbank form):

X(k, n) = s−k/2
∫ ∞

−∞
x(t)h

(
nT − a−kt

)
dt

=

∫ ∞

−∞
x(t)h

(
nakT − t

)
dt

n, k integers

Inverse:
x(t) =

∑

k

∑

n

X(k, n)ϕkn(t)
︸ ︷︷ ︸

basis
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• Wavelet filter banks always Constant-Q:

– Q
∆
= center-frequency / bandwidth

– Center-frequency
∆
= geometric mean of bandlimits

ω1 and ω2:

ωc
∆
=
√
ω1ω2

ωc(k)
∆
=
√

ω1(k)ω2(k) =
√

akω1(0)akω2(0) =
akωc(0)

Q(k)
∆
= ωc(k)

ω2(k)−ω1(k) =
akωc(0)

akω2(0)−akω1(0)
= Q(0)

• In dyadic filter bank, Q =
√
2:

center-frequency
∆
=
√

ω0(ω0 + bandwidth) =
√
2ω0

=⇒ Q =
√
2ω0

2ω0−ω0 =
√
2
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Discrete Wavelet (Dyadic) Filterbank

( )nx0h0

h1

h −N 1

( )nx
( )nx1

( )nx −N 1

f 0

f 1

f −N 1{ {

Octave
Analysis

Filter Bank

Octave
Synthesis

Filter Bank

{

Down-samplers

{

Up-samplers

( )nx̂..................

2 2

4 4

2N 2N
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STFT Tiling (Dyadic) Discrete Wavelet
Transform Tiling

t t

ω ω0 0

T T

2T 2T

3T

4T

3T

4T

ω0ω0

2
ω0

4
ω0

8
ω1 ω2
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Generalized STFT

xk(n) = (x ∗ hk)(nRk) =

∞∑

m=−∞
x(m)hk(nRk −m)

︸ ︷︷ ︸

analysis filter

x(n) =
∑

k

(xk ∗ fk)(n) =
N−1∑

k=0

∞∑

m=−∞
xk(m) fk(n−mRk)

︸ ︷︷ ︸

synthesis filter

( )nx0h0 R0

h1

h −N 1

R1

( )nx
( )nx1

( )nx −N 1

R0 f 0

f 1

f −N 1

R1

R −N 1R −N 1{ {

Analysis
Filter Bank

Synthesis
Filter Bank

{

Down-samplers

{

Up-samplers

( )nx̂

{Channel Signals

..................

• Analysis filter hk typically complex bandpass
• Rk downsamples filter output:
Critical sampling: Rk = π/Width(Hk)

• Impulse response of synth. filter fk = kth basis signal

• If {fk} are orthonormal, fk(n) = h∗k(−n)
• More generally, {hk, fk} form a biorthogonal basis.
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Biorthogonal Signal Expansions

A set of signals {hk, fk}Nk=1 is said to be a biorthogonal
basis set if any signal x can be represented as

x =

N∑

k=1

αk 〈x, hk〉 fk

where αk is some normalizing scalar dependent only on
hk and/or fk. Thus, in a biorthogonal system, we project
onto the signals hk and resynthesize in terms of fk.
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Discrete Wavelet Filterbank

hk(t) =
1√
ak
h

(
t

ak

)

, a > 1

←→ Hk(ω) =
√
akH(akω)

• Wavelet channel-filter Hk(ω) is a scaling of
channel-filter H0(ω) (scaling in time domain also)

• In STFT, channel filter Hk(ω) is a shift of
channel-filter H0(ω) (modulation in time domain)

• As k increases, hk lengthens, Hk narrows

• Dyadic filter bank (a = 2):

ω
ω0 2ω0

ω0

2
ω0

4

H0

H1H2

...

...0

1

�
2

2

• H0(ω) = top-octave bandpass (BP) filter

• H1(w) =
√
2H0(2ω) = BP for next octave down

• H2(w) = 2H0(4ω) = octave bandpass below that,
etc.
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Review of STFT Filterbanks

Let’s take a look at some of the STFT processors we’ve
seen before, now viewed as a polyphase filter bank.

Since they are all based on the FFT, they are all efficient,
but most are oversampled as “filter banks” go. Some
oversampling is usually preferred outside of a compression
context.

The STFT also computes a uniform filter bank, but it
can be used as the basis for a variety of non-uniform filter
banks giving frequency resolution closer to that of
hearing.

STFT, rectangular window, no overlap

• Perfect reconstruction
• Critically sampled (aliasing cancellation)

• Poor channel isolation (13dB)

• Not robust to filter-bank modifications
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STFT, rectangular window, 50% overlap

• Perfect reconstruction
• Oversampled by 2 (aliasing cancellation)

• Poor channel isolation (13dB)

• Not robust to filter-bank modifications, but better

STFT, triangular window, 50% overlap

• Perfect reconstruction
• Oversampled by 2

• Better channel isolation (26dB)

• Moderately robust to filter-bank modifications

STFT, Hamming window, 75% overlap

• Perfect reconstruction
• Oversampled by 4

• Aliasing from sidelobes only

• Good channel isolation (42dB)

• Moderately robust to filter-bank modifications
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STFT, Kaiser window, Beta=10, 90 percent
overlap

• Approximate perfect reconstruction (sidelobes
controlled by β)

• Oversampled by 10

• Excellent channel isolation (80 dB)

• Very robust to filter-bank modifications

• Aliasing from sidelobes only

Sliding FFT, any window, maximum overlap,
zero-padded by 5

• Perfect reconstruction
(always true when hop-size = 1)

• Oversampled by 5M :

–M = window length [time-domain oversampling
factor]

– 5 = zero-padding factor [frequency-domain
oversampling factor]

• Excellent channel isolation (set by window sidelobes)

• Extremely robust to filter-bank modifications

• No aliasing to cancel
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