Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Orthogonal Two-Channel Filter Banks


Recall the reconstruction equation for the two-channel, critically sampled, perfect-reconstruction filter-bank:

\begin{eqnarray*}
\hat{X}(z) &=& \frac{1}{2}[H_0(z)F_0(z) + H_1(z)F_1(z)]X(z)
\nonumber\\ [0.1in]
&+& \frac{1}{2}[H_0(-z)F_0(z) + H_1(-z)F_1(z)]X(-z)
\end{eqnarray*}

This can be written in matrix form as

$\displaystyle \hat{X}(z) = \frac{1}{2} \left[\begin{array}{c} F_0(z) \\ [2pt] F_1(z) \end{array}\right]^{T}
\left[\begin{array}{cc} H_0(z) & H_0(-z) \\ [2pt] H_1(z) & H_1(-z) \end{array}\right]
\left[\begin{array}{c} X(z) \\ [2pt] X(-z) \end{array}\right]
$

where the above $ 2 \times 2$ matrix, $ \bold{H}_m(z)$ , is called the alias component matrix (or analysis modulation matrix). If

$\displaystyle {\tilde {\bold{H}}}_m(z)\bold{H}_m(z) = 2\bold{I}
$

where $ {\tilde {\bold{H}}}_m(z)\mathrel{\stackrel{\mathrm{\Delta}}{=}}\bold{H}_m^T(z^{-1})$ denotes the paraconjugate of $ \bold{H}_m(z)$ , then the alias component (AC) matrix is lossless, and the (real) filter bank is orthogonal.

It turns out orthogonal filter banks give perfect reconstruction filter banks for any number of channels.

Orthogonal filter banks are also called paraunitary filter banks, which we'll study shortly in polyphase form.

The AC matrix is paraunitary if and only if the polyphase matrix is paraunitary. (See Vaidyanathan.)


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download JFB.pdf
Download JFB_2up.pdf
Download JFB_4up.pdf
[Comment on this page via email]

``Multirate, Polyphase, and Wavelet Filter Banks'', by Julius O. Smith III, Scott Levine, and Harvey Thornburg, (From Lecture Overheads, Music 421).
Copyright © 2020-06-02 by Julius O. Smith III, Scott Levine, and Harvey Thornburg
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]