Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Sliding Polyphase Filter Bank

When $ R=1$ , there is no downsampling or upsampling, and the system further reduces to the case below:

\epsfig{file=eps/polyNchanIR1.eps}

Working backward along the output delay chain, the output sum can be written as

\begin{eqnarray*}
{\hat X}(z) &=& \left[z^{-0}z^{-(N-1)} + z^{-1}z^{-(N-2)} + z^{-2}z^{-(N-3)} + \cdots \right.\\
& & \left. + z^{-(N-2)}z^{-1} + z^{-0}z^{-(N-1)} \right] X(z)\\
&=& N z^{-(N-1)} X(z)
\end{eqnarray*}

Thus, when $ R=1$ , the output is

$\displaystyle {\hat x}(n) = N x(n-N+1)
$

and we again have perfect reconstruction.


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download JFB.pdf
Download JFB_2up.pdf
Download JFB_4up.pdf
[Comment on this page via email]

``Multirate, Polyphase, and Wavelet Filter Banks'', by Julius O. Smith III, Scott Levine, and Harvey Thornburg, (From Lecture Overheads, Music 421).
Copyright © 2020-06-02 by Julius O. Smith III, Scott Levine, and Harvey Thornburg
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]