Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Polyphase View of the STFT

As a familiar special case, set

$\displaystyle \bold{E}(z) = \bold{W}_N^\ast
$

where $ \bold{W}_N^\ast$ is the DFT matrix:

$\displaystyle \bold{W}_N^\ast[kn] = \left[e^{-j2\pi kn/N}\right].
$

The inverse of this polyphase matrix is then simply the inverse DFT matrix:

$\displaystyle \bold{R}(z) = \frac{1}{N}\bold{W}_N
$

We see that the STFT can be seen as the simple special case of a perfect reconstruction filter bank for which the polyphase matrix is constant. It is also unitary when $ \bold{E}(z)=\bold{W}_N^\ast/\sqrt{N}$ and $ \bold{R}(z)=\bold{W}_N/\sqrt{N}$ .

The channel analysis and synthesis filters are, respectively,

\begin{eqnarray*}
H_k(z) &=& H_0(zW_N^k)\\ [0.1in]
F_k(z) &=& F_0(zW_N^{-k})
\end{eqnarray*}

where $ W_N\mathrel{\stackrel{\mathrm{\Delta}}{=}}e^{-j2\pi/N}$ , as usual, and

$\displaystyle F_0(z)=H_0(z)=\sum_{n=0}^{N-1}z^{-n}\leftrightarrow[1,1,\ldots,1]
$

corresponding to the rectangular window.

Looking again at the polyphase representation of the $ N$ -channel filter bank with hop size $ R$ , $ \bold{E}(z)=\bold{W}_N^\ast$ , $ \bold{R}(z)=\bold{W}_N$ , $ R$ dividing $ N$ , we have

\epsfig{file=eps/polyNchanSTFT.eps}

Thus,

$\displaystyle \zbox{\hbox{The polyphase representation is an \emph{overlap-add} representation}}
$


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download JFB.pdf
Download JFB_2up.pdf
Download JFB_4up.pdf
[Comment on this page via email]

``Multirate, Polyphase, and Wavelet Filter Banks'', by Julius O. Smith III, Scott Levine, and Harvey Thornburg, (From Lecture Overheads, Music 421).
Copyright © 2020-06-02 by Julius O. Smith III, Scott Levine, and Harvey Thornburg
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]