Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Discretization

Wave Digital Filters are based on the application of a spectral mapping or bilinear transform:

$\displaystyle s\rightarrow \frac{2}{T}\frac{1-z^{-1}}{1+z^{-1}}$    

which takes the $ s$ RHP to the $ z$ outer disk:


\begin{picture}(475,175)
\par
\put(0,0){\epsfig{file=eps/trapspec.eps}}
\put(140,45){Re($\scriptsize s$)}
\put(83,110){Im($\scriptsize s$)}
\put(210,55){\Huge {$\Longrightarrow$}}
\put(468,45){Re($\scriptsize z$)}
\put(407,110){Im($\scriptsize z$)}
\end{picture}
$ T$ is the time step and $ \frac{1}{T}$ is the sampling frequency.

Trapezoid Rule

In the time domain, this bilinear transform is equivalent to applying the trapezoid rule in order to integrate (or differentiate).

Connecting Digital N-ports

Wave Variables

It is possible to get around these realizability problems by introducing wave variables (1971) borrowed from microwave engineering

Introduce, for any port variables $ v$ and $ i$ , the quantities

$\displaystyle a$ $\displaystyle =$ $\displaystyle v+iR$   Input Wave  
$\displaystyle b$ $\displaystyle =$ $\displaystyle v-iR$   Output Wave  

$ R$ is an arbitrary positive constant, called the port resistance. We can also define power-normalized wave variables as
$\displaystyle a'$ $\displaystyle =$ $\displaystyle \frac{v+iR}{2\sqrt{R}}$  
$\displaystyle b'$ $\displaystyle =$ $\displaystyle \frac{v-iR}{2\sqrt{R}}$  

The two types of waves are simply related to eachother by
$\displaystyle a$ $\displaystyle =$ $\displaystyle 2\sqrt{R}a'$  
$\displaystyle b$ $\displaystyle =$ $\displaystyle 2\sqrt{R}b'$  

Power waves are useful in dealing with time-varying and nonlinear circuit elements.

Example: Wave Digital Inductor

From the trapezoid rule (bilinear transform) we have

$\displaystyle \frac{v(n)+v(n-1)}{2} = L\frac{i(n)-i(n-1)}{T}$    

Inserting wave variables, we get:

$\displaystyle a(n+1)+b(n+1)+a(n)+b(n) = \frac{2L}{RT}\left(a(n+1)-b(n+1)-a(n)+b(n)\right)$    

And under the choice $ R = \frac{2L}{T}$ , we get

$\displaystyle b(n) = -a(n-1)$    

A strictly causal input/output relationship. (Same in power-normalized case).

Wave-Digital Elements

We can derive wave digital equivalents of the standard circuit elements.


\begin{picture}(420,100)
\par
% graphpaper(0,0)(420,100)
\put(0,20){\epsfig{file=eps/wdoneports.eps}}
\put(-10,23){$b$}
\put(-10,88){$a$}
\put(170,23){$b=0$}
\put(170,88){$a$}
\put(350,23){$b$}
\put(350,88){$a$}
\put(40,52){$z^{\!-\!1}$}
\put(400,52){$z^{\!-\!1}$}
\put(-20,55){$R=\frac{2L}{T}$}
\put(160,55){$R=R_{0}$}
\put(340,55){$R=\frac{T}{2C}$}
\par
\put(25,7){$-1$}
\par
\put(-25,-20){{Inductor}}
\put(155,-20){{Resistor}}
\put(325,-20){{Capacitor}}
\end{picture}






\begin{picture}(500,100)
\par
% graphpaper(0,0)(500,100)
\put(0,25){\epsfig{file=eps/wdotheroneports.eps}}
\put(-10,23){$b$}
\put(-10,88){$a$}
\put(130,23){$b$}
\put(130,88){$a$}
\put(250,23){$b$}
\put(250,88){$a$}
\put(390,23){$b$}
\put(390,88){$a$}
\par
\put(55,55){$-1$}
\put(301,55.5){$\scriptstyle+$}
\put(441,55.5){$\scriptstyle+$}
\put(310,70){-}
\put(455,61){-}
\put(360,55){$2e$}
\put(500,55){$2Rf$}
\put(-10,-10){\footnotesize {Short}}
\put(-17,-30){\footnotesize {Circuit}}
\put(130,-10){\footnotesize {Open}}
\put(123,-30){\footnotesize {Circuit}}
\put(260,-10){\footnotesize {Voltage}}
\put(265,-30){\footnotesize {Source}}
\put(410,-10){\footnotesize {Current}}
\put(415,-30){\footnotesize {Source}}
\end{picture}





\begin{picture}(500,130)
\par
% graphpaper(0,0)(500,130)
\put(0,25){\epsfig{file=eps/wdtwoports.eps}}
\put(-13,33){$b_{1}$}
\put(-13,98){$a_{1}$}
\put(103,33){$a_{2}$}
\put(103,98){$b_{2}$}
\put(10,65){$R_{1}$}
\put(73,65){$R_{2}$}
\put(175,16){$\frac{1}{n}$}
\put(175,110){$n$}
\put(39,65){$1/n$}
\put(335,65){$R$}
\put(280,33){$b_{1}$}
\put(280,98){$a_{1}$}
\put(394,33){$a_{2}$}
\put(394,98){$b_{2}$}
\put(132,33){$b_{1}$}
\put(132,98){$a_{1}$}
\put(213,33){$a_{2}$}
\put(213,98){$b_{2}$}
\put(423,33){$b_{1}$}
\put(423,98){$a_{1}$}
\put(507,33){$a_{2}$}
\put(507,98){$b_{2}$}
\put(302,65){$R_{1}$}
\put(366,65){$R_{2}$}
\put(465,18){$-1$}
\put(20,-20){{Ideal Transformer}}
\put(370,-20){{Gyrator}}
\end{picture}





Adaptors

Connections between the elements are governed, as before, by Kirchoff's Laws. In terms of wave variables, we have, for a connection of $ k$ ports:

$\displaystyle b_{m}$ $\displaystyle = a_{m} -\frac{2R_{m}}{\sum_{j=1}^{k}R_{j}}\sum_{j=1}^{k}a_{j},$   $\displaystyle m=1\hdots k$   $\displaystyle {\mbox {\rm Series Connection}}$    
$\displaystyle b_{m}$ $\displaystyle = -a_{m} +\frac{2}{\sum_{j=1}^{k}G_{j}}\sum_{j=1}^{k}G_{j}a_{j},$   $\displaystyle m=1\hdots k$   $\displaystyle {\mbox {\rm Parallel Connection}}$    

where $ G_{j} = \frac{1}{R_{j}}$ is the conductance at port $ j$ . The signal processing block which carries out this operation is called an adaptor


\begin{picture}(490,140)
\par
% graphpaper(0,0)(490,140)
\put(0,20){\epsfig{file=eps/adaptors.eps}}
\put(22,114){{$a_{1}$}}
\put(58,114){{$b_{1}$}}
\put(-12,45){{$a_{2}$}}
\put(-12,80){{$b_{2}$}}
\put(22,12){{$b_{3}$}}
\put(58,12){{$a_{3}$}}
\put(136,114){{$a_{1}$}}
\put(172,114){{$b_{1}$}}
\put(102,45){{$a_{2}$}}
\put(102,80){{$b_{2}$}}
\put(136,12){{$b_{3}$}}
\put(172,12){{$a_{3}$}}
\par
\put(327,114){{$a_{1}$}}
\put(363,114){{$b_{1}$}}
\put(293,45){{$a_{2}$}}
\put(293,80){{$b_{2}$}}
\put(327,12){{$b_{3}$}}
\put(367,12){{$a_{3}$}}
\put(441,114){{$a_{1}$}}
\put(477,114){{$b_{1}$}}
\put(407,45){{$a_{2}$}}
\put(407,80){{$b_{2}$}}
\put(441,12){{$b_{3}$}}
\put(477,12){{$a_{3}$}}
\put(10,-20){{Series Adaptor}}
\put(310,-20){{Parallel Adaptor}}
\end{picture}





Scattering Matrices

The series and parallel adaptor equations can be written as

$\displaystyle {\bf b} = {\bf Sa}$    

where

$\displaystyle \begin{array}{rccll}
{\mathbf S} &=& & {\mathbf I} - {\mathbf \alpha}^{T}{\bf 1}\hspace{0.5in}&{\mbox {\rm {(Series)}}}\nonumber \\
{\bf S} &=& - & {\mathbf I} + {\mathbf 1}^{T}{\mathbf \beta}\hspace{0.5in}&{\mbox {\rm (Parallel)}}\nonumber
\end{array} $

where $ {\bf\alpha} = \frac{2}{\sum_{i=1}^{k}R_{i}}\left(R_{1}\hdots R_{k}\right)$ , $ {\bf\beta} = \frac{2}{\sum_{i=1}^{k}G_{i}}\left(G_{1}\hdots G_{k}\right)$ we have also: $ {\bf S^{2}=I}$ in either case. For power-normalized waves:

$\displaystyle {\mathbf S'}$ $\displaystyle = {\mathbf I} - {\mathbf \alpha'}^{T}{\bf\alpha'}\hspace{0.5in}$ $\displaystyle {\mbox {\rm { Series}}}$    
$\displaystyle {\bf S'}$ $\displaystyle = -{\mathbf I} + {\mathbf \beta'}^{T}{\mathbf \beta'}\hspace{0.5in}$ $\displaystyle {\mbox {\rm Parallel}}$    

where $ \alpha' = \sqrt{\alpha}$ and $ \beta' = \sqrt{\beta}$ (over all components). We have $ {\bf S'}^{T}{\bf S'} = {\bf S'}{\bf S'}^{T} = {\bf I}$ (orthonormal, unitary).


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download Meshes.pdf
Download Meshes_2up.pdf
Download Meshes_4up.pdf

``Wave Digital Filters and Waveguide Networks for Numerical Integration of Time-Dependent PDEs'', by Stefan Bilbao<bilbao@ccrma.stanford.edu>, (From CCRMA DSP Seminar Presentation, Music 423).
Copyright © 2019-02-05 by Stefan Bilbao<bilbao@ccrma.stanford.edu>
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]