Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Modulated Gaussian-Windowed Chirp

By the modulation theorem for Fourier transforms,

$\displaystyle \zbox {x(t)e^{-j\omega_0t}\;\longleftrightarrow\;X(\omega+\omega_0).}$ (11.30)

This is proved in §B.6 as the dual of the shift-theorem. It is also evident from inspection of the Fourier transform:

$\displaystyle \int_{-\infty}^\infty \left[x(t)e^{-j\omega_0 t}\right] e^{-j\omega t} dt \eqsp \int_{-\infty}^\infty x(t)e^{-j(\omega+\omega_0) t} dt \isdefs X(\omega+\omega_0)$ (11.31)

Applying the modulation theorem to the Gaussian transform pair above yields

$\displaystyle \zbox {e^{-pt^2} e^{-j\omega_0 t} \;\longleftrightarrow\;\sqrt{\frac{\pi}{p}} e^{-\frac{(\omega+\omega_0)^2}{4p}},\quad \forall p\in \mathbb{C}: \; \mbox{re}\left\{p\right\}>0.}$ (11.32)

Thus, we frequency-shift a Gaussian chirp in the same way we frequency-shift any signal--by complex modulation (multiplication by a complex sinusoid at the shift-frequency).


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Spectral Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2011, ISBN 978-0-9745607-3-1.
Copyright © 2022-02-28 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA