Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Chirplet Fourier Transform

The Fourier transform of a complex Gaussian pulse is derived in §D.8 of Appendix D:

$\displaystyle \zbox {e^{-pt^2} \;\longleftrightarrow\;\sqrt{\frac{\pi}{p}} e^{-\frac{\omega^2}{4p}},\quad \forall p\in \mathbb{C}: \; \mbox{re}\left\{p\right\}>0} \protect$ (11.27)

This result is valid when $ p$ is complex. Writing $ p$ in terms of real variables $ \alpha $ and $ \beta $ as

$\displaystyle p \eqsp \alpha - j\beta,$ (11.28)

we have

$\displaystyle x(t) \eqsp e^{-p t^2} \eqsp e^{-\alpha t^2} e^{j\beta t^2} \eqsp e^{-\alpha t^2} \left[\cos(\beta t^2) + j\sin(\beta t^2)\right].$ (11.29)

That is, for $ p$ complex, $ x(t)$ is a chirplet (Gaussian-windowed chirp). We see that the chirp oscillation frequency is zero at time $ t=0$ . Therefore, for signal modeling applications, we typically add in an arbitrary frequency offset at time 0, as described in the next section.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Spectral Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2011, ISBN 978-0-9745607-3-1.
Copyright © 2016-07-18 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA