This is our first example illustrating a series connection of wave digital elements. Figure F.26 gives the physical scenario of a simple massdashpot system, and Fig.F.27 shows the equivalent circuit. Replacing element voltages and currents in the equivalent circuit by wave variables in an infinitesimal waveguides produces Fig.F.28.


The system can be described as an ideal force source connected in parallel with the series connection of mass and dashpot . Figure F.29 illustrates the resulting wave digital filter. Note that the ports are now numbered for reference. Two more symbols are introduced in this figure: (1) the horizontal line with a dot in the middle indicating a series adaptor, and (2) the indication of a reflectionfree port on input 1 of the series adaptor (signal ). Recall that a reflectionfree port is always necessary when connecting two adaptors together, to avoid creating a delayfree loop.
Let's first calculate the impedance necessary to make input 1 of the series adaptor reflection free. From Eq.(F.34), we require
That is, the impedance of the reflectionfree port must equal the series combination of all other port impedances meeting at the junction.
The parallel adaptor, viewed alone, is equivalent to a force source driving impedance . It is therefore realizable as in Fig.F.20 with the wave digital spring replaced by the massdashpot assembly in Fig.F.29. However, we can also carry out a quick analysis to verify this: The alpha parameters are
Therefore, the reflection coefficient seen at port 1 of the parallel adaptor is , and the KellyLochbaum scattering junction depicted in Fig.F.20 is verified.
Let's now calculate the internals of the series adaptor in Fig.F.29. From Eq.(F.23), the beta parameters are
Following Eq.(F.27), the series adaptor computes
We do not need to explicitly compute because it goes into a purely resistive impedance and produces no return wave. For the same reason, . Figure F.30 shows a wave flow diagram of the computations derived, together with the result of elementary simplifications.

Because the difference of the two coefficients in Fig.F.30 is 1, we can easily derive the onemultiply form in Fig.F.31.