Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Multi-Dimensional Elements and Wave Digital Filters

MD N-ports

Need to extend the notion of passivity to distributed networks.

Basic element, the $ N$ -port has the same form in multi-D:

MD N-ports Continued

MD-Passivity

An MD $ N$ -port is called integrally $ MD$ -passive (in $ G$ ) if we have

$\displaystyle \int_{G}p_{inst}d{\bf t} - \int_{\partial G} W_{st}\cdot{\bf n}d\sigma\geq 0$    

or differentially $ MD$ passive, if we have

$\displaystyle p_{inst} - \nabla\cdot W_{st}\geq 0$    

and $ MD$ -lossless if equality holds.

The MD Inductor

Consider the following relation:

$\displaystyle v({\bf t}) = L\frac{\partial i({\bf t})}{\partial t_{j}}$    

where $ L$ is a positive constant, and $ t_{j}, j=1\hdots k$ is an causal coordinate.

We can define a discrete approximation by applying the trapezoid rule in the $ t_{j}$ direction:

$\displaystyle \frac{v_{\hdots,n_{j},\hdots}+v_{\hdots, n_{j}-1,\hdots}}{2} = \frac{L}{T_{1}}\left(i_{\hdots,n_{j},\hdots}-i_{\hdots, n_{j}-1,\hdots}\right)$    

And introducing wave variables,

$\displaystyle a_{n_{1},\hdots,n_{k}}$ $\displaystyle =$ $\displaystyle v_{n_{1},\hdots,n_{k}}+Ri_{n_{1},\hdots,n_{k}}$  
$\displaystyle b_{n_{1},\hdots,n_{k}}$ $\displaystyle =$ $\displaystyle v_{n_{1},\hdots,n_{k}}-Ri_{n_{1},\hdots,n_{k}}$  

can get the MD-equivalent of the wave-digital inductance one-port:

$\displaystyle b_{\hdots,n_{j},\hdots}=-a_{\hdots,n_{j}-1,\hdots}, \hspace{0.5in}, R = \frac{2L}{T_{j}}$ (1)


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download Meshes.pdf
Download Meshes_2up.pdf
Download Meshes_4up.pdf

``Wave Digital Filters and Waveguide Networks for Numerical Integration of Time-Dependent PDEs'', by Stefan Bilbao<bilbao@ccrma.stanford.edu>, (From CCRMA DSP Seminar Presentation, Music 423).
Copyright © 2019-02-05 by Stefan Bilbao<bilbao@ccrma.stanford.edu>
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]