Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Cyclic Autocorrelation

For sequences of length $ N$ , the cyclic autocorrelation operator is defined by

$\displaystyle (v\star v)_l \isdefs \sum_{n=0}^{N-1} \overline{v(n)} v(n+l) \;\longleftrightarrow\;\left\vert V(\omega_k)\right\vert^2, \quad k=0,1,2,\ldots,N-1,$ (7.19)

where $ \omega_k\isdef 2\pi k/N$ and the index $ n+l$ is interpreted modulo $ N$ .

By using zero padding by a factor of 2 or more, cyclic autocorrelation also implements acyclic autocorrelation as defined in (6.16).

An unbiased cyclic autocorrelation is obtained, in the zero-mean case, by simply normalizing $ v\star v$ by the number of terms in the sum:

$\displaystyle \hat{r}_v(l) = \frac{1}{N}(v\star v)_l$ (7.20)


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Spectral Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2011, ISBN 978-0-9745607-3-1.
Copyright © 2016-07-18 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA