Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Lossy Finite Difference Recursion

We will now derive a finite-difference model in terms of string displacement samples which correspond to the lossy digital waveguide model of Fig. G.5. This derivation generalizes the lossless case considered in §G.4.3.

Figure G.7 depicts a digital waveguide section once again in ``physical canonical form,'' as shown earlier in Fig. G.5, and introduces a doubly indexed notation for greater clarity in the derivation below [420,207,116,115].

Figure G.7: Lossy digital waveguide--frequency-independent loss-factors $ g$.
\begin{figure}\input fig/wglossy.pstex_t
\end{figure}

Referring to Fig. G.7, we have the following time-update relations:

\begin{eqnarray*}
y^{+}_{n+1,m}&=& gy^{+}_{n,m-1}\;=\; g(y_{n,m-1}- y^{-}_{n,m-1...
...y^{-}_{n+1,m}&=& gy^{+}_{n,m+1}\;=\; g(y_{n,m+1}- y^{-}_{n,m+1})
\end{eqnarray*}

Adding these equations gives

$\displaystyle y_{n+1,m}$ $\displaystyle =$ $\displaystyle g(y_{n,m-1}+y_{n,m+1})
- g(\underbrace{y^{-}_{n,m-1}}_{gy^{-}_{n-1,m}} +
\underbrace{y^{-}_{n,m+1}}_{gy^{+}_{n-1,m}})$  
  $\displaystyle =$ $\displaystyle g(y_{n,m-1}+y_{n,m+1}) - g^2 y_{n-1,m}
\protect$ (G.31)

This is now in the form of the finite-difference time-domain (FDTD) scheme analyzed in [207]:

$\displaystyle y_{n+1,m}=
g^{+}_my_{n,m-1}+
g^{-}_my_{n,m+1}+ a_my_{n-1,m},
$

with $ g^{+}_m= g^{-}_m= g$, and $ a_m= -g^2$. In [116], it was shown by von Neumann analysisL.4) that these parameter choices give rise to a stable finite-difference schemeL.2.3), provided $ \vert g\vert\leq 1$. In the present context, we expect stability to follow naturally from starting with a passive digital waveguide model.



Subsections
Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]