Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Digital Filter Models of Damped Strings

In an efficient digital simulation, lumped loss factors of the form $ G^k(\omega)$ are approximated by a rational frequency response $ {\hat G}_k(e^{j\omega T})$. In general, the coefficients of the optimal rational loss filter are obtained by minimizing $ \vert\vert\,G^k(\omega) -
{\hat G}_k(e^{j\omega T})\,\vert\vert $ with respect to the filter coefficients or the poles and zeros of the filter. To avoid introducing frequency-dependent delay, the loss filter should be a zero-phase, finite-impulse-response (FIR) filter [340]. Restriction to zero phase requires the impulse response $ {\hat g}_k(n)$ to be finite in length (i.e., an FIR filter) and it must be symmetric about time zero, i.e., $ {\hat g}_k(-n)={\hat g}_k(n)$. In most implementations, the zero-phase FIR filter can be converted into a causal, linear phase filter by reducing an adjacent delay line by half of the impulse-response duration.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]