Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


State Conversions

In §C.3.6, an arbitrary string state was converted to traveling displacement-wave components to show that the traveling-wave representation is complete, i.e., that any physical string state can be expressed as a pair of traveling-wave components. In this section, we revisit this topic using force and velocity waves.

By definition of the traveling-wave decomposition, we have

\begin{eqnarray*}
f&=&f^{{+}}+f^{{-}}\\
v&=&v^{+}+v^{-}.
\end{eqnarray*}

Using Eq.(C.46), we can eliminate $ v^{+}=f^{{+}}/R$ and $ v^{-}=-f^{{+}}/R$ , giving, in matrix form,

$\displaystyle \left[\begin{array}{c} f \\ [2pt] v \end{array}\right] = \left[\begin{array}{cc} 1 & 1 \\ [2pt] \frac{1}{R} & -\frac{1}{R} \end{array}\right]
\left[\begin{array}{c} f^{{+}} \\ [2pt] f^{{-}} \end{array}\right].
$

Thus, the string state (in terms of force and velocity) is expressed as a linear transformation of the traveling force-wave components. Using the Ohm's law relations to eliminate instead $ f^{{+}}=
Rv^{+}$ and $ f^{{-}}=-Rv^{-}$ , we obtain

$\displaystyle \left[\begin{array}{c} f \\ [2pt] v \end{array}\right] = \left[\begin{array}{cc} R & -R \\ [2pt] 1 & 1 \end{array}\right]\left[\begin{array}{c} v^{+} \\ [2pt] v^{-} \end{array}\right].
$

To convert an arbitrary initial string state $ (f,v)$ to either a traveling force-wave or velocity-wave simulation, we simply must be able to invert the appropriate two-by-two matrix above. That is, the matrix must be nonsingular. Requiring both determinants to be nonzero yields the condition

$\displaystyle 0 < R < \infty.
$

That is, the wave impedance must be a positive, finite number. This restriction makes good physical sense because one cannot propagate a finite-energy wave in either a zero or infinite wave impedance.

Carrying out the inversion to obtain force waves $ (f^{{+}},f^{{-}})$ from $ (f,v)$ yields

$\displaystyle \left[\begin{array}{c} f^{{+}} \\ [2pt] f^{{-}} \end{array}\right] = \frac{1}{2}\left[\begin{array}{cc} 1 & R \\ [2pt] 1 & -R \end{array}\right] \left[\begin{array}{c} f \\ [2pt] v \end{array}\right]
= \left[\begin{array}{c} \frac{f+Rv}{2} \\ [2pt] \frac{f-Rv}{2} \end{array}\right].
$

Similarly, velocity waves $ (v^{+},v^{-})$ are prepared from $ (f,v)$ according to

$\displaystyle \left[\begin{array}{c} v^{+} \\ [2pt] v^{-} \end{array}\right] = \frac{1}{2}\left[\begin{array}{cc} \frac{1}{R} & 1 \\ [2pt] -\frac{1}{R} & 1 \end{array}\right]
\left[\begin{array}{c} f \\ [2pt] v \end{array}\right] = \left[\begin{array}{c} \frac{v+f/R}{2} \\ [2pt] \frac{v-f/R}{2} \end{array}\right].
$


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Physical Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2010, ISBN 978-0-9745607-2-4
Copyright © 2023-08-20 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA