Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Sidelobe Roll-Off Rate

In general, when only the first $ n$ terms exist in the power-series expansion of a continuous function $ w(t)$ (i.e., each term is finite), then the Fourier Transform magnitude $ \vert W(\omega)\vert$ is asymptotically proportional to

$\displaystyle \vert W(\omega)\vert \to \frac{1}{\omega^n} \quad(\hbox{as }\omega\to\infty)
$

Proof: Papoulis, Signal Analysis, McGraw-Hill, 1977

Thus, we have the following rule-of-thumb:

$\displaystyle \zbox{\hbox{$n$\ terms} \leftrightarrow -6n \hbox{ dB per octave roll-off rate}}
$

(since $ -20\log_{10}(2)=6.0205999\ldots$ ).
This is also $ -20n$ dB per decade.

To apply this result, we normally only need to look at the window's endpoints. The interior of the window is usually differentiable of all orders.

Example Roll-Off Rates:

For discrete-time windows, the roll-off rate slows down at high frequencies due to aliasing.

In summary, the DTFT of the $ M$ -sample rectangular window is proportional to the `aliased sinc function':

\begin{eqnarray*}
\hbox{asinc}_M(\omega T) &\mathrel{\stackrel{\Delta}{=}}& \frac{\sin(\omega M T / 2)}{M\cdot\sin(\omega T/2)} \\ [0.2in]
&\approx& \frac{\sin(\pi fMT)}{M\pi fT} \mathrel{\stackrel{\mathrm{\Delta}}{=}}\mbox{sinc}(fMT)
\end{eqnarray*}

Points to note:


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``FFT Windows'', by Julius O. Smith III and Bill Putnam, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III and Bill Putnam
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]