Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Acoustic Plane Waves

Pressure Plane Waves:

\begin{eqnarray*}
p^+(n) &\mathrel{\stackrel{\mathrm{\Delta}}{=}}& R_a\,u^{+}(n)\\
p^-(n) &\mathrel{\stackrel{\mathrm{\Delta}}{=}}& -R_a\,u^{-}(n)
\end{eqnarray*}

where $ u^{+},u^{-}$ are
Longitudinal Particle-Velocity Waves




Ohm's Law for Traveling Acoustic Plane Waves:

\fbox{%
\begin{minipage}[c]{3in}%
\begin{displaymath}\begin{array}{rcrl}%
p^+(n)&=&& R_au^{+}(n) \\
p^-(n)&=&-& R_au^{-}(n)
\end{array}\end{displaymath}\end{minipage}}
where

$\displaystyle \zbox{R_a = \rho c}
$

is the wave impedance of air in terms of mass density $ \rho$ ( kg$ /$m$ ^3$ ) and sound speed $ c$ .


Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download StringWaves.pdf
Download StringWaves_2up.pdf
Download StringWaves_4up.pdf

``Digitizing Strings Waves in Vibrating Strings'', by Julius O. Smith III, (From Lecture Overheads, Music 420).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]