Ideal Vibrating String Model

MUS420 Lecture
 Digitizing Traveling Waves in Vibrating Strings

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, California 94305

June 27, 2020

Outline

- Ideal vibrating string
- Traveling-wave solution
- Sampled traveling waves

We know already how to model a string as a bidirectional delay line with

- inverting reflecting terminations (for displacement)
- filters for loss and dispersion
- outputs as sums of traveling-wave components

This model is based on traveling waves and the superposition of traveling waves as experimental fact. In such a model, sound-speed must be measured experimentally.
We now take our string model to the next level based on the physics of ideal strings:

- Sound speed becomes a predicted quantity
- The very useful concept of wave impedance is derived

Ideal String Physics

Wave Equation

$$
K y^{\prime \prime}=\epsilon \ddot{y}
$$

Newton's second law

$$
\text { Force }=\text { Mass } \times \text { Acceleration }
$$

Assumptions

- Lossless
- Linear
- Flexible (no "Stiffness")
- Slope $y^{\prime}(t, x) \ll 1$

String Wave Equation Derivation

Force diagram for length $d x$ string element Total upward force on length $d x$ string element:

$$
\begin{aligned}
f(x+d x / 2) & =K \sin \left(\theta_{1}\right)+K \sin \left(\theta_{2}\right) \\
& \approx K\left[\tan \left(\theta_{1}\right)+\tan \left(\theta_{2}\right)\right] \\
& =K\left[-y^{\prime}(x)+y^{\prime}(x+d x)\right] \\
& \left.\approx K\left[-y^{\prime}(x)+y^{\prime}(x)+y^{\prime \prime}(x) d x\right)\right] \\
& =K y^{\prime \prime}(x) d x
\end{aligned}
$$

Mass of length $d x$ string segment: $m=\epsilon d x$.
By Newton's law, $f=m a=m \ddot{y}$, we have

$$
K y^{\prime \prime}(t, x) d x=(\epsilon d x) \ddot{y}(t, x)
$$

or

$$
K y^{\prime \prime}(t, x)=\epsilon \ddot{y}(t, x)
$$

Traveling-Wave Solution

One-dimensional lossless wave equation:

$$
K y^{\prime \prime}=\epsilon \ddot{y}
$$

Plug in traveling wave to the right:

$$
\begin{aligned}
y(t, x) & =y_{r}(t-x / c) \\
\Rightarrow \quad y^{\prime}(t, x) & =-\frac{1}{c} \dot{y}(t, x) \\
y^{\prime \prime}(t, x) & =\frac{1}{c^{2}} \ddot{y}(t, x)
\end{aligned}
$$

- Given $c \triangleq \sqrt{K / \epsilon}$, the wave equation is satisfied for any shape traveling to the right at speed c (but remember slope $\ll 1$)
- Similarly, any left-going traveling wave at speed c, $y_{l}(t+x / c)$, satisfies the wave equation (show)
- General solution to lossless, 1D, second-order wave equation:

$$
y(t, x)=y_{r}(t-x / c)+y_{l}(t+x / c)
$$

- $y_{l}(\cdot)$ and $y_{r}(\cdot)$ are arbitrary twice-differentiable functions (slope $\ll 1$)
- Important point: Function of two variables $y(t, x)$ is replaced by two functions of a single (time) variable \Rightarrow reduced computational complexity.
- Published by d'Alembert in 1747
(wave equation itself introduced in same paper)

Infinitely long string plucked simultaneously at three points marked ' p '

- Initial displacement $=$ sum of two identical triangular pulses
- At time t_{0}, traveling waves centers are separated by $2 c t_{0}$ meters
- String is not moving where the traveling waves overlap at same slope.
- Nelson Lee's Animation ${ }^{1}$
- Travis Skare's Interactive Animation ${ }^{2}$

[^0]
Sampled Traveling Waves in a String

For discrete-time simulation, we must sample the traveling waves

- Sampling interval $\triangleq T$ seconds
- Sampling rate $\triangleq f_{s} \mathrm{~Hz}=1 / T$
- Spatial sampling interval $\triangleq X \mathrm{~m} / \mathrm{s} \triangleq c T$ \Rightarrow systolic grid

For a vibrating string with length L and fundamental frequency f_{0},

$$
c=f_{0} \cdot 2 L \quad\left(\frac{\text { meters }}{\text { sec }}=\frac{\text { periods }}{\mathrm{sec}} \cdot \frac{\text { meters }}{\text { period }}\right)
$$

so that

$$
X=c T=\left(f_{0} 2 L\right) / f_{s}=L\left[f_{0} /\left(f_{s} / 2\right)\right]
$$

Thus, the number of spatial samples along the string is

$$
L / X=\left(f_{s} / 2\right) / f_{0}
$$

or
Number of spatial samples $=$ Number of string harmonics

Examples:

- Spatial sampling interval for CD-quality digital model of Les Paul electric guitar (strings ≈ 26 inches)
$-X=L f_{0} /\left(f_{s} / 2\right)=L 82.4 / 22050 \approx 2.5 \mathrm{~mm}$ for low E string
$-X \approx 10 \mathrm{~mm}$ for high E string (two octaves higher and the same length)
- Low E string: $\left(f_{s} / 2\right) / f_{0}=22050 / 82.4=268$ harmonics (spatial samples)
- High E string: 67 harmonics (spatial samples)
- Number of harmonics $=$ number of oscillators required in additive synthesis
- Number of harmonics $=$ number of two-pole filters required in subtractive, modal, or source-filter decomposition synthesis
- Digital waveguide model needs only one delay line (length $2 L$)

Examples (continued):

- Sound propagation in air:
- Speed of sound $c \approx 331$ meters per second
$-X=331 / 44100=7.5 \mathrm{~mm}$
- Spatial sampling rate $=\nu_{s}=1 / X=133$ samples/m
- Sound speed in air is comparable to that of transverse waves on a guitar string (faster than some strings, slower than others)
- Sound travels much faster in most solids than in air
- Longitudinal waves in strings travel faster than transverse waves
* typically an order of magnitude faster

Sampled Traveling Waves in any Digital Waveguide

$$
\begin{aligned}
& x \rightarrow x_{m}=m X \\
& t \rightarrow t_{n}=n T \\
& \Rightarrow \\
& y\left(t_{n}, x_{m}\right)= y_{r}\left(t_{n}-x_{m} / c\right)+y_{l}\left(t_{n}+x_{m} / c\right) \\
&= y_{r}(n T-m X / c)+y_{l}(n T+m X / c) \\
&= y_{r}[(n-m) T]+y_{l}[(n+m) T] \\
&= y^{+}(n-m)+y^{-}(n+m)
\end{aligned}
$$

when $X=c T$, where we defined

$$
y^{+}(n) \triangleq y_{r}(n T) \quad y^{-}(n) \stackrel{\Delta}{\triangleq} y_{l}(n T)
$$

- "+" superscript \Longrightarrow right-going
-"-" superscript \Longrightarrow left-going
- $y_{r}[(n-m) T]=y^{+}(n-m)=$ output of m-sample delay line with input $y^{+}(n)$
- $y_{l}[(n+m) T] \triangleq y^{-}(n+m)=$ input to an m-sample delay line whose output is $y^{-}(n)$

Lossless digital waveguide with observation

points at $x=0$ and $x=3 X=3 c T$

- Recall:

$$
\begin{aligned}
y(t, x) & =y^{+}\left(\frac{t-x / c}{T}\right)+y^{-}\left(\frac{t+x / c}{T}\right) \\
& \downarrow \\
y(n T, m X) & =y^{+}(n-m)+y^{-}(n+m)
\end{aligned}
$$

- Position $x_{m}=m X=m c T$ is eliminated from the simulation
- Position x_{m} remains laid out from left to right
- Left- and right-going traveling waves must be summed to produce a physical output

$$
y\left(t_{n}, x_{m}\right)=y^{+}(n-m)+y^{-}(n+m)
$$

- Similar to ladder and lattice digital filters

Important point: Discrete time simulation is exact at the sampling instants, to within the numerical precision of the samples themselves.

To avoid aliasing associated with sampling:

- Require all initial waveshapes be bandlimited to $\left(-f_{s} / 2, f_{s} / 2\right)$
- Require all external driving signals be similarly bandlimited
- Avoid nonlinearities or keep them "weak"
- Avoid time variation or keep it slow
- Use plenty of oversampling and lowpass filtering with rapid high-frequency roll-off in severely nonlinear and/or time-varying cases
- Prefer "feed-forward" over "feed-back" around nonlinearities and/or modulations when possible

Interactive simulation of a vibrating string:
http://www.colorado.edu/physics/phet/simulations/-
stringwave/stringWave.swf

Digital Waveguide Plucked-String Model Using Initial Conditions

Initial conditions for the ideal plucked string.

- Amplitude of each traveling-wave $=1 / 2$ initial string displacement.
- Sum of the upper and lower delay lines = initial string displacement.

Other Wave Variables (Wave-Impedance Preview)

Transverse Velocity Waves:

$$
\begin{aligned}
& v^{+}(n) \triangleq \dot{y}^{+}(n) \\
& v^{-}(n) \triangleq \dot{y}^{-}(n)
\end{aligned}
$$

Wave Impedance (we'll derive later):

$$
R=\sqrt{K \epsilon}=\frac{K}{c}=\epsilon c
$$

Force Waves:

$$
\begin{aligned}
& f^{+}(n) \triangleq R v^{+}(n) \\
& f^{-}(n) \triangleq-R v^{-}(n)
\end{aligned}
$$

Ohm's Law for Traveling Waves:

$$
\begin{aligned}
& f^{+}(n)=R v^{+}(n) \\
& f^{-}(n)=-R v^{-}(n)
\end{aligned}
$$

Acoustic Plane Waves

Pressure Plane Waves:

$$
\begin{aligned}
& p^{+}(n) \triangleq R_{a} u^{+}(n) \\
& p^{-}(n) \triangleq-R_{a} u^{-}(n)
\end{aligned}
$$

where u^{+}, u^{-}are
Longitudinal Particle-Velocity Waves

Ohm's Law for Traveling Acoustic Plane Waves:

$$
\begin{aligned}
& p^{+}(n)=R_{a} u^{+}(n) \\
& p^{-}(n)=-R_{a} u^{-}(n)
\end{aligned}
$$

where

$$
R_{a}=\rho c
$$

is the wave impedance of air in terms of mass density ρ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ and sound speed c.

Acoustic Tubes

In acoustic tubes, we again work with

Pressure Plane Waves:

$$
\begin{aligned}
& p^{+}(n) \triangleq R_{\mathrm{r}} U^{+}(n) \\
& p^{-}(n) \triangleq-R_{\mathrm{T}} U^{-}(n)
\end{aligned}
$$

However, now U^{+}, U^{-}are

Longitudinal Volume-Velocity Waves:

$$
\begin{aligned}
& U^{+}(n) \triangleq A u^{+}(n) \\
& U^{-}(n) \triangleq A u^{-}(n)
\end{aligned}
$$

where A is the cross-sectional area of the tube. In an acoustic tube, it is volume velocity that is conserved from one tube section to the next.

Ohm's Law for Traveling Plane Waves in an

 Acoustic Tube:$$
\begin{aligned}
& p^{+}(n)=R_{\mathrm{r}} U^{+}(n) \\
& p^{-}(n)=-R_{\mathrm{r}} U^{-}(n)
\end{aligned}
$$

where

$$
R_{\mathrm{r}}=\frac{\rho c}{A}
$$

is the wave impedance of air in terms of mass density ρ, sound speed c, and tube cross-section area A.

[^0]: ${ }^{1}$ http://ccrma.stanford.edu/~jos/rsadmin/TravellingWaveApp.swf
 ${ }^{2}$ https://ccrma.stanford.edu/~travissk/dwgdemo/

