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• Ideal vibrating string

• Traveling-wave solution

• Sampled traveling waves
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Ideal Vibrating String Model

We know already how to model a string as a bidirectional

delay line with

• inverting reflecting terminations (for displacement)

• filters for loss and dispersion

• outputs as sums of traveling-wave components

This model is based on traveling waves and the
superposition of traveling waves as experimental fact. In
such a model, sound-speed must be measured
experimentally.

We now take our string model to the next level based on
the physics of ideal strings:

• Sound speed becomes a predicted quantity

• The very useful concept of wave impedance is derived
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Ideal String Physics

Position

y (t,x)

0 x

. . .

. . .
0

K

String Tension

ε = Mass/Length

Wave Equation
Ky′′ = ǫÿ

K
∆
= string tension y

∆
= y(t, x)

ǫ
∆
= linear mass density ẏ

∆
= ∂

∂ty(t, x)

y
∆
= string displacement y′

∆
= ∂

∂xy(t, x)

Newton’s second law

Force = Mass× Acceleration

Assumptions

• Lossless

• Linear

• Flexible (no “Stiffness”)

• Slope y′(t, x) ≪ 1
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String Wave Equation Derivation

x x+ dx
θ2

K K

stringf

K sin(θ2)
K sin(θ1) θ1

Force diagram for length dx string element

Total upward force on length dx string element:

f (x + dx/2) = K sin(θ1) +K sin(θ2)

≈ K [tan(θ1) + tan(θ2)]

= K [−y′(x) + y′(x + dx)]

≈ K [−y′(x) + y′(x) + y′′(x)dx)]

= Ky′′(x)dx

Mass of length dx string segment: m = ǫ dx.

By Newton’s law, f = ma = mÿ, we have

Ky′′(t, x)dx = (ǫ dx)ÿ(t, x)

or
Ky′′(t, x) = ǫÿ(t, x)
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Traveling-Wave Solution

One-dimensional lossless wave equation:

Ky′′ = ǫÿ

Plug in traveling wave to the right:

y(t, x) = yr(t− x/c)

⇒ y′(t, x) = −1

c
ẏ(t, x)

y′′(t, x) =
1

c2
ÿ(t, x)

• Given c
∆
=
√

K/ǫ, the wave equation is satisfied for
any shape traveling to the right at speed c (but
remember slope ≪ 1)

• Similarly, any left-going traveling wave at speed c,
yl(t + x/c), satisfies the wave equation (show)
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• General solution to lossless, 1D, second-order wave
equation:

y(t, x) = yr(t− x/c) + yl(t + x/c)

• yl(·) and yr(·) are arbitrary twice-differentiable
functions (slope ≪ 1)

• Important point: Function of two variables y(t, x)
is replaced by two functions of a single (time) variable
⇒ reduced computational complexity.

• Published by d’Alembert in 1747
(wave equation itself introduced in same paper)
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Infinitely long string plucked simultaneously at
three points marked ‘p’

String Shape at

time t
0

String Shape at

time 0

c c

Traveling Wave

Components

at time t
0

. . .. . .

p

pp

• Initial displacement = sum of two identical triangular
pulses

• At time t0, traveling waves centers are separated by
2ct0 meters

• String is not moving where the traveling waves
overlap at same slope.

• Nelson Lee’s Animation1

• Travis Skare’s Interactive Animation2

1http://ccrma.stanford.edu/~jos/rsadmin/TravellingWaveApp.swf
2https://ccrma.stanford.edu/~travissk/dwgdemo/
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Sampled Traveling Waves in a String

For discrete-time simulation, we must sample the
traveling waves

• Sampling interval
∆
= T seconds

• Sampling rate
∆
= fs Hz = 1/T

• Spatial sampling interval
∆
= X m/s

∆
= cT

⇒ systolic grid

For a vibrating string with length L and fundamental
frequency f0,

c = f0 · 2L
(

meters

sec
=

periods

sec
· meters
period

)

so that

X = cT = (f02L)/fs = L[f0/(fs/2)]

Thus, the number of spatial samples along the string is

L/X = (fs/2)/f0

or

Number of spatial samples = Number of string harmonics
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Examples:

• Spatial sampling interval for CD-quality digital model
of Les Paul electric guitar (strings ≈ 26 inches)

– X = Lf0/(fs/2) = L82.4/22050 ≈ 2.5 mm for
low E string

– X ≈ 10 mm for high E string (two octaves higher
and the same length)

– Low E string: (fs/2)/f0 = 22050/82.4 = 268
harmonics (spatial samples)

– High E string: 67 harmonics (spatial samples)

• Number of harmonics = number of oscillators
required in additive synthesis

• Number of harmonics = number of two-pole filters
required in subtractive, modal, or source-filter
decomposition synthesis

• Digital waveguide model needs only one delay line
(length 2L)

9



Examples (continued):

• Sound propagation in air :

– Speed of sound c ≈ 331 meters per second

– X = 331/44100 = 7.5 mm

– Spatial sampling rate = νs = 1/X = 133
samples/m

– Sound speed in air is comparable to that of
transverse waves on a guitar string (faster than
some strings, slower than others)

– Sound travels much faster in most solids than in air

– Longitudinal waves in strings travel faster than
transverse waves

∗ typically an order of magnitude faster
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Sampled Traveling Waves in any Digital
Waveguide

x → xm = mX

t → tn = nT
⇒

y(tn, xm) = yr(tn − xm/c) + yl(tn + xm/c)

= yr(nT −mX/c) + yl(nT +mX/c)

= yr [(n−m)T ] + yl [(n +m)T ]

= y+(n−m) + y−(n +m)

when X = cT , where we defined

y+(n)
∆
= yr(nT ) y−(n)

∆
= yl(nT )

• “+” superscript =⇒ right-going

• “−” superscript =⇒ left-going

• yr [(n−m)T ] = y+(n−m) = output of m-sample
delay line with input y+(n)

• yl [(n +m)T ] ∆
= y−(n +m) = input to an m-sample

delay line whose output is y−(n)
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Lossless digital waveguide with observation
points at x = 0 and x = 3X = 3cT

(x = 0) (x = cT) (x = 2cT)

. . .

. . .. . .

. . .

z 1-

z 1-

z 1-

z 1-z 1-

z 1-

y (n+2)-y (n+1)-

y (n-1)
+

y (n-2)
+

y (nT,3X)

y (n)-

y (n)
+

y (nT,0)

y (n-3)
+

(x = 3cT)

y (n+3)-

• Recall:

y(t, x) = y+
(

t− x/c

T

)

+ y−
(

t + x/c

T

)

↓
y(nT,mX) = y+(n−m) + y−(n +m)

• Position xm = mX = mcT is eliminated from the
simulation

• Position xm remains laid out from left to right

• Left- and right-going traveling waves must be
summed to produce a physical output

y(tn, xm) = y+(n−m) + y−(n +m)

• Similar to ladder and lattice digital filters
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Important point: Discrete time simulation is exact at
the sampling instants, to within the numerical precision
of the samples themselves.

To avoid aliasing associated with sampling:

• Require all initial waveshapes be bandlimited to
(−fs/2, fs/2)

• Require all external driving signals be similarly
bandlimited

• Avoid nonlinearities or keep them “weak”

• Avoid time variation or keep it slow

• Use plenty of oversampling and lowpass filtering with
rapid high-frequency roll-off in severely nonlinear
and/or time-varying cases

• Prefer “feed-forward” over “feed-back” around
nonlinearities and/or modulations when possible

Interactive simulation of a vibrating string:
http://www.colorado.edu/physics/phet/simulations/-

stringwave/stringWave.swf

13

http://www.colorado.edu/physics/phet/simulations/stringwave/stringWave.swf


Digital Waveguide Plucked-String Model Using
Initial Conditions

(x = 0) (x = L)

y (n+N/2)

-1“Bridge”

y (n)
+

“Nut”

-y (n)-

-1

y (n-N/2)
+

(x =  Pluck Position)

Initial conditions for the ideal plucked string.

• Amplitude of each traveling-wave = 1/2 initial string
displacement.

• Sum of the upper and lower delay lines = initial string
displacement.
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Other Wave Variables
(Wave-Impedance Preview)

Transverse Velocity Waves:

v+(n)
∆
= ẏ+(n)

v−(n)
∆
= ẏ−(n)

Wave Impedance (we’ll derive later):

R =
√
Kǫ =

K

c
= ǫc

Force Waves:

f+(n)
∆
= Rv+(n)

f−(n)
∆
= −Rv−(n)

Ohm’s Law for Traveling Waves:

f+(n) = Rv+(n)
f−(n) = − Rv−(n)
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Acoustic Plane Waves

Pressure Plane Waves:

p+(n)
∆
= Ra u

+(n)

p−(n)
∆
= −Ra u

−(n)

where u+, u− are
Longitudinal Particle-Velocity Waves

Ohm’s Law for Traveling Acoustic Plane Waves:

p+(n) = Rau
+(n)

p−(n) = − Rau
−(n)

where
Ra = ρc

is the wave impedance of air in terms of mass density ρ
(kg/m3) and sound speed c.
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Acoustic Tubes

In acoustic tubes, we again work with
Pressure Plane Waves:

p+(n)
∆
= R

T
U+(n)

p−(n)
∆
= −R

T
U−(n)

However, now U+, U− are
Longitudinal Volume-Velocity Waves:

U+(n)
∆
= Au+(n)

U−(n)
∆
= Au−(n)

where A is the cross-sectional area of the tube. In an
acoustic tube, it is volume velocity that is conserved from
one tube section to the next.

Ohm’s Law for Traveling Plane Waves in an
Acoustic Tube:

p+(n) = R
T
U+(n)

p−(n) = − R
T
U−(n)

where

R
T
=

ρc

A
is the wave impedance of air in terms of mass density ρ,
sound speed c, and tube cross-section area A.
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