Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Multi-dimensional Kirchoff Circuits and Wave Digital Networks

The 1D Transmission Line

The 1D Transmission Line (cont'd)

First Attempt at a Kirchoff Circuit (cont'd)

We can write the telegrapher's equations down directly as a two-loop circuit, with currents $ i$ and $ \frac{u}{r_{0}}$ $ r_{0}=$ scaling parameter, dimensions of resistance:


\begin{picture}(600,250)
\par
\put(-125,-680){\epsfig{file=eps/kctrans1dnopasspic.eps}}
\end{picture}

Problem: Not MD-passive.

Fix: Classical network theory manipulations.

Passive MD Circuit

To any T-junction corresponds a lattice or Jaumann equivalent:


\begin{picture}(600,220)
\par
\put(-125,-680){\epsfig{file=eps/Jaueqpic.eps}}
\end{picture}



Employing this equivalence gives a concretely MD-passive structure


\begin{picture}(600,300)
\par
\put(-125,-600){\epsfig{file=eps/trans1dpasspic.eps}}
\end{picture}

Comments

Simplifications

If $ l$ and $ c$ are constant, and we have no sources then we can derive a simplified form (a).

If in addition, we have $ lg=cr$ , then the line is distorionless, and we have simple travelling waves, which are attenuated (b).


\begin{picture}(600,250)
\par
\put(-125,-680){\epsfig{file=eps/trans1dsimppic.eps}}
\end{picture}

2D ``Parallel Plate''

A Passive Circuit and Wave Digital Network

Applying a coordinate transformation (for rectangular coordinates), we get the following circuit and network:


\begin{picture}(600,250)
\par
\put(-125,-680){\epsfig{file=eps/2dtranspasspic.eps}}
\end{picture}

\begin{picture}(600,300)
\par
\put(-125,-630){\epsfig{file=eps/2dtranswdpic.eps}}
\end{picture}





Other Systems

The circuit approach is applicable to a wide range of problems including:


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download Meshes.pdf
Download Meshes_2up.pdf
Download Meshes_4up.pdf

``Wave Digital Filters and Waveguide Networks for Numerical Integration of Time-Dependent PDEs'', by Stefan Bilbao<bilbao@ccrma.stanford.edu>, (From CCRMA DSP Seminar Presentation, Music 423).
Copyright © 2019-02-05 by Stefan Bilbao<bilbao@ccrma.stanford.edu>
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]