In previous work, time-domain adaptors (digital filters) converting between K variables and W variables have been devised [224]. In this section, an alternative approach is proposed. Mapping Eq.(E.7) gives us an immediate conversion from W to K state variables, so all we need now is the inverse map for any time . This is complicated by the fact that non-local spatial dependencies can go indefinitely in one direction along the string, as we will see below. We will proceed by first writing down the conversion from W to K variables in matrix form, which is easy to do, and then invert that matrix. For simplicity, we will consider the case of an infinitely long string.
To initialize a K variable simulation for starting at time , we need initial spatial samples at all positions for two successive times and . From this state specification, the FDTD scheme Eq.(E.3) can compute for all , and so on for increasing . In the DW model, all state variables are defined as belonging to the same time , as shown in Fig.E.2.
From Eq.(E.6), and referring to the notation defined in
Fig.E.2, we may write the conversion from W to K variables
as
Figure E.3 shows the so-called ``stencil'' of the FDTD scheme. The larger circles indicate the state at time which can be used to compute the state at time . The filled and unfilled circles indicate membership in one of two interleaved grids [55]. To see why there are two interleaved grids, note that when is even, the update for depends only on odd from time and even from time . Since the two W components of are converted to two W components at time in Eq.(E.8), we have that the update for depends only on W components from time and positions . Moving to the next position update, for , the state used is independent of that used for , and the W components used are from positions and . As a result of these observations, we see that we may write the state-variable transformation separately for even and odd , e.g.,
Therefore, we may easily write down the inverted transformation: