Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Bode Plots

A Bode Plot of a filter frequency response $ H(j\omega)$ separately graphs the log-magnitude and phase versus log-frequency.16We are only concerned here with log-magnitude plots, and will omit consideration of the Bode phase plot, which happen to behave as expected naturally. The usual choice of log-magnitude units is decibels (dB) $ 20\log_{10}\left[\vert H(j\omega)\vert/R\right]$ (relative to an arbitrary reference, such as $ R=1$ ), and the log-frequency axis is typically either in octaves ( $ \propto\log_2(\omega)$ ) or decades ( $ \propto\log_{10}(\omega)$ ). Thus, a single pole is said to give a roll-off of $ -6$ dB per octave or $ -20$ dB per decade. Octaves are typical in audio signal processing while decades are typical in the field of automatic control.

Figure 1: Bode plot and its asymptotes (``stick diagram'') for a single pole at $ s=-1$ , i.e., the transfer function $ H(s)=1/(s+1)$ .
\begin{figure}[scale=2, transform shape]
\centering
\begin{tikzpicture}[gnuplot, scale=1.5, transform shape]
\path (0.000,0.000) rectangle (8.000,6.000);
\gpfill{rgb color={1.000,1.000,1.000}} (1.320,0.985)--(7.446,0.985)--(7.446,5.630)--(1.320,5.630)--cycle;
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\gpsetlinewidth{0.50}
\draw[gp path] (1.320,0.985)--(7.447,0.985);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (1.320,0.985)--(1.571,0.985);
\draw[gp path] (7.447,0.985)--(7.196,0.985);
\gpcolor{rgb color={0.000,0.000,0.000}}
\node[gp node right,font={\fontsize{10.0pt}{12.0pt}\selectfont}] at (1.136,0.985) {-20};
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (1.320,2.147)--(7.447,2.147);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (1.320,2.147)--(1.571,2.147);
\draw[gp path] (7.447,2.147)--(7.196,2.147);
\gpcolor{rgb color={0.000,0.000,0.000}}
\node[gp node right,font={\fontsize{10.0pt}{12.0pt}\selectfont}] at (1.136,2.147) {-15};
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (1.320,3.308)--(7.447,3.308);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (1.320,3.308)--(1.571,3.308);
\draw[gp path] (7.447,3.308)--(7.196,3.308);
\gpcolor{rgb color={0.000,0.000,0.000}}
\node[gp node right,font={\fontsize{10.0pt}{12.0pt}\selectfont}] at (1.136,3.308) {-10};
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (1.320,4.470)--(7.447,4.470);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (1.320,4.470)--(1.571,4.470);
\draw[gp path] (7.447,4.470)--(7.196,4.470);
\gpcolor{rgb color={0.000,0.000,0.000}}
\node[gp node right,font={\fontsize{10.0pt}{12.0pt}\selectfont}] at (1.136,4.470) {-5};
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (1.320,5.631)--(7.447,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (1.320,5.631)--(1.571,5.631);
\draw[gp path] (7.447,5.631)--(7.196,5.631);
\gpcolor{rgb color={0.000,0.000,0.000}}
\node[gp node right,font={\fontsize{10.0pt}{12.0pt}\selectfont}] at (1.136,5.631) {0};
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (1.320,0.985)--(1.320,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (1.320,0.985)--(1.320,1.236);
\draw[gp path] (1.320,5.631)--(1.320,5.380);
\gpcolor{rgb color={0.000,0.000,0.000}}
\node[gp node center,font={\fontsize{10.0pt}{12.0pt}\selectfont}] at (1.320,0.677) {$10^{-1}$};
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (2.242,0.985)--(2.242,1.165);
\draw[gp path] (2.242,1.935)--(2.242,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (2.242,0.985)--(2.242,1.110);
\draw[gp path] (2.242,5.631)--(2.242,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (2.782,0.985)--(2.782,1.165);
\draw[gp path] (2.782,1.935)--(2.782,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (2.782,0.985)--(2.782,1.110);
\draw[gp path] (2.782,5.631)--(2.782,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (3.164,0.985)--(3.164,1.165);
\draw[gp path] (3.164,1.935)--(3.164,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (3.164,0.985)--(3.164,1.110);
\draw[gp path] (3.164,5.631)--(3.164,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (3.461,0.985)--(3.461,1.165);
\draw[gp path] (3.461,1.935)--(3.461,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (3.461,0.985)--(3.461,1.110);
\draw[gp path] (3.461,5.631)--(3.461,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (3.704,0.985)--(3.704,1.165);
\draw[gp path] (3.704,1.935)--(3.704,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (3.704,0.985)--(3.704,1.110);
\draw[gp path] (3.704,5.631)--(3.704,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (3.909,0.985)--(3.909,1.165);
\draw[gp path] (3.909,1.935)--(3.909,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (3.909,0.985)--(3.909,1.110);
\draw[gp path] (3.909,5.631)--(3.909,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (4.087,0.985)--(4.087,1.165);
\draw[gp path] (4.087,1.935)--(4.087,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (4.087,0.985)--(4.087,1.110);
\draw[gp path] (4.087,5.631)--(4.087,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (4.243,0.985)--(4.243,1.165);
\draw[gp path] (4.243,1.935)--(4.243,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (4.243,0.985)--(4.243,1.110);
\draw[gp path] (4.243,5.631)--(4.243,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (4.384,0.985)--(4.384,1.165);
\draw[gp path] (4.384,1.935)--(4.384,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (4.384,0.985)--(4.384,1.236);
\draw[gp path] (4.384,5.631)--(4.384,5.380);
\gpcolor{rgb color={0.000,0.000,0.000}}
\node[gp node center,font={\fontsize{10.0pt}{12.0pt}\selectfont}] at (4.384,0.677) {$10^{0}$};
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (5.306,0.985)--(5.306,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (5.306,0.985)--(5.306,1.110);
\draw[gp path] (5.306,5.631)--(5.306,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (5.845,0.985)--(5.845,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (5.845,0.985)--(5.845,1.110);
\draw[gp path] (5.845,5.631)--(5.845,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (6.228,0.985)--(6.228,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (6.228,0.985)--(6.228,1.110);
\draw[gp path] (6.228,5.631)--(6.228,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (6.525,0.985)--(6.525,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (6.525,0.985)--(6.525,1.110);
\draw[gp path] (6.525,5.631)--(6.525,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (6.767,0.985)--(6.767,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (6.767,0.985)--(6.767,1.110);
\draw[gp path] (6.767,5.631)--(6.767,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (6.972,0.985)--(6.972,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (6.972,0.985)--(6.972,1.110);
\draw[gp path] (6.972,5.631)--(6.972,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (7.150,0.985)--(7.150,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (7.150,0.985)--(7.150,1.110);
\draw[gp path] (7.150,5.631)--(7.150,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (7.307,0.985)--(7.307,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (7.307,0.985)--(7.307,1.110);
\draw[gp path] (7.307,5.631)--(7.307,5.506);
\gpcolor{color=gp lt color axes}
\gpsetlinetype{gp lt axes}
\gpsetdashtype{gp dt axes}
\draw[gp path] (7.447,0.985)--(7.447,5.631);
\gpcolor{color=gp lt color border}
\gpsetlinetype{gp lt border}
\gpsetdashtype{gp dt solid}
\draw[gp path] (7.447,0.985)--(7.447,1.236);
\draw[gp path] (7.447,5.631)--(7.447,5.380);
\gpcolor{rgb color={0.000,0.000,0.000}}
\node[gp node center,font={\fontsize{10.0pt}{12.0pt}\selectfont}] at (7.447,0.677) {$10^{1}$};
\gpcolor{color=gp lt color border}
\draw[gp path] (1.320,5.631)--(1.320,0.985)--(7.447,0.985)--(7.447,5.631)--cycle;
\gpcolor{rgb color={0.000,0.000,0.000}}
\node[gp node center,rotate=90,font={\fontsize{10.0pt}{12.0pt}\selectfont}] at (0.246,3.308) {Magnitude (dB)};
\node[gp node center,font={\fontsize{10.0pt}{12.0pt}\selectfont}] at (4.383,0.215) {log10 ( Radian Frequency )};
\gpcolor{color=gp lt color border}
\gpsetlinewidth{1.00}
\draw[gp path] (1.504,1.165)--(1.504,1.935)--(4.812,1.935)--(4.812,1.165)--cycle;
\gpcolor{rgb color={0.000,0.000,0.000}}
\node[gp node right,font={\fontsize{10.0pt}{12.0pt}\selectfont}] at (4.812,1.742) {Filter Gain};
\gpcolor{rgb color={0.000,0.000,1.000}}
\gpsetlinewidth{2.00}
\draw[gp path] (1.688,1.742)--(2.604,1.742);
\draw[gp path] (1.320,5.631)--(1.447,5.629)--(1.563,5.627)--(1.669,5.624)--(1.768,5.621)%
--(1.859,5.619)--(1.945,5.616)--(2.026,5.612)--(2.102,5.609)--(2.174,5.605)--(2.242,5.601)%
--(2.307,5.598)--(2.369,5.593)--(2.428,5.589)--(2.485,5.585)--(2.539,5.580)--(2.591,5.575)%
--(2.641,5.570)--(2.690,5.565)--(2.737,5.560)--(2.782,5.554)--(2.825,5.548)--(2.868,5.543)%
--(2.908,5.537)--(2.948,5.531)--(2.987,5.524)--(3.024,5.518)--(3.061,5.512)--(3.096,5.505)%
--(3.131,5.498)--(3.164,5.491)--(3.197,5.484)--(3.229,5.477)--(3.261,5.470)--(3.291,5.462)%
--(3.321,5.455)--(3.350,5.447)--(3.379,5.440)--(3.407,5.432)--(3.434,5.424)--(3.461,5.416)%
--(3.488,5.408)--(3.513,5.400)--(3.539,5.391)--(3.564,5.383)--(3.588,5.374)--(3.612,5.366)%
--(3.636,5.357)--(3.659,5.348)--(3.682,5.340)--(3.704,5.331)--(3.726,5.322)--(3.747,5.313)%
--(3.769,5.304)--(3.790,5.295)--(3.810,5.285)--(3.831,5.276)--(3.851,5.267)--(3.870,5.258)%
--(3.890,5.248)--(3.909,5.239)--(3.928,5.229)--(3.946,5.220)--(3.965,5.210)--(3.983,5.200)%
--(4.001,5.191)--(4.018,5.181)--(4.036,5.171)--(4.053,5.162)--(4.070,5.152)--(4.087,5.142)%
--(4.103,5.132)--(4.119,5.122)--(4.136,5.112)--(4.152,5.102)--(4.167,5.092)--(4.183,5.082)%
--(4.198,5.072)--(4.213,5.062)--(4.228,5.052)--(4.243,5.042)--(4.258,5.032)--(4.273,5.022)%
--(4.287,5.012)--(4.301,5.002)--(4.315,4.992)--(4.329,4.982)--(4.343,4.972)--(4.357,4.962)%
--(4.370,4.952)--(4.384,4.942)--(4.397,4.932)--(4.410,4.922)--(4.423,4.911)--(4.436,4.901)%
--(4.448,4.891)--(4.461,4.881)--(4.474,4.871)--(4.486,4.861)--(4.498,4.851)--(4.510,4.841)%
--(4.522,4.831)--(4.534,4.821)--(4.546,4.811)--(4.558,4.801)--(4.569,4.791)--(4.581,4.781)%
--(4.592,4.771)--(4.604,4.761)--(4.615,4.751)--(4.626,4.741)--(4.637,4.731)--(4.648,4.721)%
--(4.659,4.711)--(4.670,4.702)--(4.680,4.692)--(4.691,4.682)--(4.702,4.672)--(4.712,4.662)%
--(4.722,4.652)--(4.733,4.643)--(4.743,4.633)--(4.753,4.623)--(4.763,4.614)--(4.773,4.604)%
--(4.783,4.594)--(4.793,4.585)--(4.802,4.575)--(4.812,4.565)--(4.822,4.556)--(4.831,4.546)%
--(4.841,4.537)--(4.850,4.527)--(4.859,4.518)--(4.869,4.508)--(4.878,4.499)--(4.887,4.489)%
--(4.896,4.480)--(4.905,4.471)--(4.914,4.461)--(4.923,4.452)--(4.932,4.443)--(4.941,4.433)%
--(4.949,4.424)--(4.958,4.415)--(4.967,4.406)--(4.975,4.396)--(4.984,4.387)--(4.992,4.378)%
--(5.000,4.369)--(5.009,4.360)--(5.017,4.351)--(5.025,4.342)--(5.034,4.333)--(5.042,4.324)%
--(5.050,4.315)--(5.058,4.306)--(5.066,4.297)--(5.074,4.288)--(5.082,4.279)--(5.089,4.271)%
--(5.097,4.262)--(5.105,4.253)--(5.113,4.244)--(5.120,4.236)--(5.128,4.227)--(5.136,4.218)%
--(5.143,4.209)--(5.151,4.201)--(5.158,4.192)--(5.166,4.184)--(5.173,4.175)--(5.180,4.167)%
--(5.188,4.158)--(5.195,4.150)--(5.202,4.141)--(5.209,4.133)--(5.216,4.124)--(5.223,4.116)%
--(5.230,4.108)--(5.237,4.099)--(5.244,4.091)--(5.251,4.083)--(5.258,4.074)--(5.265,4.066)%
--(5.272,4.058)--(5.279,4.050)--(5.286,4.042)--(5.292,4.034)--(5.299,4.025)--(5.306,4.017)%
--(5.312,4.009)--(5.319,4.001)--(5.326,3.993)--(5.332,3.985)--(5.339,3.977)--(5.345,3.969)%
--(5.351,3.961)--(5.358,3.954)--(5.364,3.946)--(5.371,3.938)--(5.377,3.930)--(5.383,3.922)%
--(5.389,3.914)--(5.396,3.907)--(5.402,3.899)--(5.408,3.891)--(5.414,3.884)--(5.420,3.876)%
--(5.426,3.868)--(5.433,3.861)--(5.439,3.853)--(5.445,3.846)--(5.451,3.838)--(5.456,3.830)%
--(5.462,3.823)--(5.468,3.815)--(5.474,3.808)--(5.480,3.801)--(5.486,3.793)--(5.492,3.786)%
--(5.497,3.778)--(5.503,3.771)--(5.509,3.764)--(5.515,3.756)--(5.520,3.749)--(5.526,3.742)%
--(5.532,3.735)--(5.537,3.727)--(5.543,3.720)--(5.548,3.713)--(5.554,3.706)--(5.559,3.699)%
--(5.565,3.692)--(5.570,3.685)--(5.576,3.678)--(5.581,3.670)--(5.587,3.663)--(5.592,3.656)%
--(5.597,3.649)--(5.603,3.642)--(5.608,3.636)--(5.613,3.629)--(5.618,3.622)--(5.624,3.615)%
--(5.629,3.608)--(5.634,3.601)--(5.639,3.594)--(5.644,3.587)--(5.650,3.581)--(5.655,3.574)%
--(5.660,3.567)--(5.665,3.560)--(5.670,3.554)--(5.675,3.547)--(5.680,3.540)--(5.685,3.534)%
--(5.690,3.527)--(5.695,3.520)--(5.700,3.514)--(5.705,3.507)--(5.710,3.501)--(5.715,3.494)%
--(5.720,3.488)--(5.725,3.481)--(5.729,3.475)--(5.734,3.468)--(5.739,3.462)--(5.744,3.455)%
--(5.749,3.449)--(5.753,3.442)--(5.758,3.436)--(5.763,3.430)--(5.768,3.423)--(5.772,3.417)%
--(5.777,3.411)--(5.782,3.404)--(5.786,3.398)--(5.791,3.392)--(5.795,3.386)--(5.800,3.379)%
--(5.805,3.373)--(5.809,3.367)--(5.814,3.361)--(5.818,3.355)--(5.823,3.349)--(5.827,3.342)%
--(5.832,3.336)--(5.836,3.330)--(5.841,3.324)--(5.845,3.318)--(5.850,3.312)--(5.854,3.306)%
--(5.858,3.300)--(5.863,3.294)--(5.867,3.288)--(5.872,3.282)--(5.876,3.276)--(5.880,3.270)%
--(5.884,3.264)--(5.889,3.258)--(5.893,3.252)--(5.897,3.247)--(5.902,3.241)--(5.906,3.235)%
--(5.910,3.229)--(5.914,3.223)--(5.918,3.217)--(5.923,3.212)--(5.927,3.206)--(5.931,3.200)%
--(5.935,3.194)--(5.939,3.189)--(5.943,3.183)--(5.948,3.177)--(5.952,3.172)--(5.956,3.166)%
--(5.960,3.160)--(5.964,3.155)--(5.968,3.149)--(5.972,3.143)--(5.976,3.138)--(5.980,3.132)%
--(5.984,3.127)--(5.988,3.121)--(5.992,3.116)--(5.996,3.110)--(6.000,3.105)--(6.004,3.099)%
--(6.008,3.094)--(6.012,3.088)--(6.016,3.083)--(6.019,3.077)--(6.023,3.072)--(6.027,3.066)%
--(6.031,3.061)--(6.035,3.056)--(6.039,3.050)--(6.043,3.045)--(6.046,3.039)--(6.050,3.034)%
--(6.054,3.029)--(6.058,3.023)--(6.062,3.018)--(6.065,3.013)--(6.069,3.008)--(6.073,3.002)%
--(6.077,2.997)--(6.080,2.992)--(6.084,2.987)--(6.088,2.981)--(6.091,2.976)--(6.095,2.971)%
--(6.099,2.966)--(6.102,2.961)--(6.106,2.956)--(6.110,2.950)--(6.113,2.945)--(6.117,2.940)%
--(6.121,2.935)--(6.124,2.930)--(6.128,2.925)--(6.131,2.920)--(6.135,2.915)--(6.138,2.910)%
--(6.142,2.905)--(6.146,2.900)--(6.149,2.895)--(6.153,2.890)--(6.156,2.885)--(6.160,2.880)%
--(6.163,2.875)--(6.167,2.870)--(6.170,2.865)--(6.174,2.860)--(6.177,2.855)--(6.181,2.850)%
--(6.184,2.845)--(6.187,2.840)--(6.191,2.836)--(6.194,2.831)--(6.198,2.826)--(6.201,2.821)%
--(6.204,2.816)--(6.208,2.811)--(6.211,2.807)--(6.215,2.802)--(6.218,2.797)--(6.221,2.792)%
--(6.225,2.787)--(6.228,2.783)--(6.231,2.778)--(6.235,2.773)--(6.238,2.769)--(6.241,2.764)%
--(6.244,2.759)--(6.248,2.754)--(6.251,2.750)--(6.254,2.745)--(6.258,2.740)--(6.261,2.736)%
--(6.264,2.731)--(6.267,2.726)--(6.270,2.722)--(6.274,2.717)--(6.277,2.713)--(6.280,2.708)%
--(6.283,2.703)--(6.286,2.699)--(6.290,2.694)--(6.293,2.690)--(6.296,2.685)--(6.299,2.681)%
--(6.302,2.676)--(6.305,2.672)--(6.309,2.667)--(6.312,2.663)--(6.315,2.658)--(6.318,2.654)%
--(6.321,2.649)--(6.324,2.645)--(6.327,2.640)--(6.330,2.636)--(6.333,2.631)--(6.336,2.627)%
--(6.340,2.623)--(6.343,2.618)--(6.346,2.614)--(6.349,2.609)--(6.352,2.605)--(6.355,2.601)%
--(6.358,2.596)--(6.361,2.592)--(6.364,2.588)--(6.367,2.583)--(6.370,2.579)--(6.373,2.575)%
--(6.376,2.570)--(6.379,2.566)--(6.382,2.562)--(6.385,2.558)--(6.388,2.553)--(6.391,2.549)%
--(6.393,2.545)--(6.396,2.541)--(6.399,2.536)--(6.402,2.532)--(6.405,2.528)--(6.408,2.524)%
--(6.411,2.519)--(6.414,2.515)--(6.417,2.511)--(6.420,2.507)--(6.423,2.503)--(6.425,2.499)%
--(6.428,2.494)--(6.431,2.490)--(6.434,2.486)--(6.437,2.482)--(6.440,2.478)--(6.442,2.474)%
--(6.445,2.470)--(6.448,2.466)--(6.451,2.462)--(6.454,2.457)--(6.457,2.453)--(6.459,2.449)%
--(6.462,2.445)--(6.465,2.441)--(6.468,2.437)--(6.470,2.433)--(6.473,2.429)--(6.476,2.425)%
--(6.479,2.421)--(6.482,2.417)--(6.484,2.413)--(6.487,2.409)--(6.490,2.405)--(6.492,2.401)%
--(6.495,2.397)--(6.498,2.393)--(6.501,2.389)--(6.503,2.385)--(6.506,2.381)--(6.509,2.377)%
--(6.511,2.374)--(6.514,2.370)--(6.517,2.366)--(6.519,2.362)--(6.522,2.358)--(6.525,2.354)%
--(6.527,2.350)--(6.530,2.346)--(6.533,2.342)--(6.535,2.339)--(6.538,2.335)--(6.541,2.331)%
--(6.543,2.327)--(6.546,2.323)--(6.549,2.319)--(6.551,2.316)--(6.554,2.312)--(6.556,2.308)%
--(6.559,2.304)--(6.562,2.300)--(6.564,2.297)--(6.567,2.293)--(6.569,2.289)--(6.572,2.285)%
--(6.574,2.282)--(6.577,2.278)--(6.580,2.274)--(6.582,2.270)--(6.585,2.267)--(6.587,2.263)%
--(6.590,2.259)--(6.592,2.256)--(6.595,2.252)--(6.597,2.248)--(6.600,2.244)--(6.602,2.241)%
--(6.605,2.237)--(6.607,2.233)--(6.610,2.230)--(6.612,2.226)--(6.615,2.222)--(6.617,2.219)%
--(6.620,2.215)--(6.622,2.212)--(6.625,2.208)--(6.627,2.204)--(6.630,2.201)--(6.632,2.197)%
--(6.635,2.194)--(6.637,2.190)--(6.639,2.186)--(6.642,2.183)--(6.644,2.179)--(6.647,2.176)%
--(6.649,2.172)--(6.652,2.169)--(6.654,2.165)--(6.656,2.161)--(6.659,2.158)--(6.661,2.154)%
--(6.664,2.151)--(6.666,2.147)--(6.668,2.144)--(6.671,2.140)--(6.673,2.137)--(6.676,2.133)%
--(6.678,2.130)--(6.680,2.126)--(6.683,2.123)--(6.685,2.119)--(6.687,2.116)--(6.690,2.112)%
--(6.692,2.109)--(6.694,2.106)--(6.697,2.102)--(6.699,2.099)--(6.701,2.095)--(6.704,2.092)%
--(6.706,2.088)--(6.708,2.085)--(6.711,2.082)--(6.713,2.078)--(6.715,2.075)--(6.718,2.071)%
--(6.720,2.068)--(6.722,2.065)--(6.725,2.061)--(6.727,2.058)--(6.729,2.054)--(6.731,2.051)%
--(6.734,2.048)--(6.736,2.044)--(6.738,2.041)--(6.740,2.038)--(6.743,2.034)--(6.745,2.031)%
--(6.747,2.028)--(6.750,2.024)--(6.752,2.021)--(6.754,2.018)--(6.756,2.015)--(6.758,2.011)%
--(6.761,2.008)--(6.763,2.005)--(6.765,2.001)--(6.767,1.998)--(6.770,1.995)--(6.772,1.992)%
--(6.774,1.988)--(6.776,1.985)--(6.778,1.982)--(6.781,1.979)--(6.783,1.975)--(6.785,1.972)%
--(6.787,1.969)--(6.789,1.966)--(6.792,1.962)--(6.794,1.959)--(6.796,1.956)--(6.798,1.953)%
--(6.800,1.950)--(6.802,1.946)--(6.805,1.943)--(6.807,1.940)--(6.809,1.937)--(6.811,1.934)%
--(6.813,1.931)--(6.815,1.927)--(6.817,1.924)--(6.820,1.921)--(6.822,1.918)--(6.824,1.915)%
--(6.826,1.912)--(6.828,1.908)--(6.830,1.905)--(6.832,1.902)--(6.834,1.899)--(6.836,1.896)%
--(6.839,1.893)--(6.841,1.890)--(6.843,1.887)--(6.845,1.884)--(6.847,1.880)--(6.849,1.877)%
--(6.851,1.874)--(6.853,1.871)--(6.855,1.868)--(6.857,1.865)--(6.859,1.862)--(6.862,1.859)%
--(6.864,1.856)--(6.866,1.853)--(6.868,1.850)--(6.870,1.847)--(6.872,1.844)--(6.874,1.841)%
--(6.876,1.838)--(6.878,1.835)--(6.880,1.832)--(6.882,1.829)--(6.884,1.826)--(6.886,1.823)%
--(6.888,1.820)--(6.890,1.817)--(6.892,1.814)--(6.894,1.811)--(6.896,1.808)--(6.898,1.805)%
--(6.900,1.802)--(6.902,1.799)--(6.904,1.796)--(6.906,1.793)--(6.908,1.790)--(6.910,1.787)%
--(6.912,1.784)--(6.914,1.781)--(6.916,1.778)--(6.918,1.775)--(6.920,1.772)--(6.922,1.769)%
--(6.924,1.766)--(6.926,1.763)--(6.928,1.760)--(6.930,1.757)--(6.932,1.755)--(6.934,1.752)%
--(6.936,1.749)--(6.938,1.746)--(6.940,1.743)--(6.942,1.740)--(6.944,1.737)--(6.946,1.734)%
--(6.948,1.731)--(6.949,1.729)--(6.951,1.726)--(6.953,1.723)--(6.955,1.720)--(6.957,1.717)%
--(6.959,1.714)--(6.961,1.711)--(6.963,1.709)--(6.965,1.706)--(6.967,1.703)--(6.969,1.700)%
--(6.971,1.697)--(6.972,1.694)--(6.974,1.692)--(6.976,1.689)--(6.978,1.686)--(6.980,1.683)%
--(6.982,1.680)--(6.984,1.677)--(6.986,1.675)--(6.988,1.672)--(6.989,1.669)--(6.991,1.666)%
--(6.993,1.663)--(6.995,1.661)--(6.997,1.658)--(6.999,1.655)--(7.001,1.652)--(7.003,1.650)%
--(7.004,1.647)--(7.006,1.644)--(7.008,1.641)--(7.010,1.639)--(7.012,1.636)--(7.014,1.633)%
--(7.015,1.630)--(7.017,1.628)--(7.019,1.625)--(7.021,1.622)--(7.023,1.619)--(7.025,1.617)%
--(7.026,1.614)--(7.028,1.611)--(7.030,1.609)--(7.032,1.606)--(7.034,1.603)--(7.036,1.600)%
--(7.037,1.598)--(7.039,1.595)--(7.041,1.592)--(7.043,1.590)--(7.045,1.587)--(7.046,1.584)%
--(7.048,1.582)--(7.050,1.579)--(7.052,1.576)--(7.054,1.574)--(7.055,1.571)--(7.057,1.568)%
--(7.059,1.566)--(7.061,1.563)--(7.062,1.560)--(7.064,1.558)--(7.066,1.555)--(7.068,1.552)%
--(7.070,1.550)--(7.071,1.547)--(7.073,1.545)--(7.075,1.542)--(7.077,1.539)--(7.078,1.537)%
--(7.080,1.534)--(7.082,1.531)--(7.084,1.529)--(7.085,1.526)--(7.087,1.524)--(7.089,1.521)%
--(7.091,1.518)--(7.092,1.516)--(7.094,1.513)--(7.096,1.511)--(7.098,1.508)--(7.099,1.506)%
--(7.101,1.503)--(7.103,1.500)--(7.104,1.498)--(7.106,1.495)--(7.108,1.493)--(7.110,1.490)%
--(7.111,1.488)--(7.113,1.485)--(7.115,1.482)--(7.116,1.480)--(7.118,1.477)--(7.120,1.475)%
--(7.122,1.472)--(7.123,1.470)--(7.125,1.467)--(7.127,1.465)--(7.128,1.462)--(7.130,1.460)%
--(7.132,1.457)--(7.133,1.455)--(7.135,1.452)--(7.137,1.450)--(7.138,1.447)--(7.140,1.445)%
--(7.142,1.442)--(7.143,1.440)--(7.145,1.437)--(7.147,1.435)--(7.148,1.432)--(7.150,1.430)%
--(7.152,1.427)--(7.153,1.425)--(7.155,1.422)--(7.157,1.420)--(7.158,1.417)--(7.160,1.415)%
--(7.162,1.412)--(7.163,1.410)--(7.165,1.407)--(7.167,1.405)--(7.168,1.403)--(7.170,1.400)%
--(7.172,1.398)--(7.173,1.395)--(7.175,1.393)--(7.176,1.390)--(7.178,1.388)--(7.180,1.385)%
--(7.181,1.383)--(7.183,1.381)--(7.185,1.378)--(7.186,1.376)--(7.188,1.373)--(7.189,1.371)%
--(7.191,1.368)--(7.193,1.366)--(7.194,1.364)--(7.196,1.361)--(7.197,1.359)--(7.199,1.356)%
--(7.201,1.354)--(7.202,1.352)--(7.204,1.349)--(7.205,1.347)--(7.207,1.345)--(7.209,1.342)%
--(7.210,1.340)--(7.212,1.337)--(7.213,1.335)--(7.215,1.333)--(7.217,1.330)--(7.218,1.328)%
--(7.220,1.326)--(7.221,1.323)--(7.223,1.321)--(7.224,1.318)--(7.226,1.316)--(7.228,1.314)%
--(7.229,1.311)--(7.231,1.309)--(7.232,1.307)--(7.234,1.304)--(7.235,1.302)--(7.237,1.300)%
--(7.239,1.297)--(7.240,1.295)--(7.242,1.293)--(7.243,1.290)--(7.245,1.288)--(7.246,1.286)%
--(7.248,1.283)--(7.249,1.281)--(7.251,1.279)--(7.253,1.277)--(7.254,1.274)--(7.256,1.272)%
--(7.257,1.270)--(7.259,1.267)--(7.260,1.265)--(7.262,1.263)--(7.263,1.261)--(7.265,1.258)%
--(7.266,1.256)--(7.268,1.254)--(7.269,1.251)--(7.271,1.249)--(7.272,1.247)--(7.274,1.245)%
--(7.275,1.242)--(7.277,1.240)--(7.278,1.238)--(7.280,1.236)--(7.281,1.233)--(7.283,1.231)%
--(7.284,1.229)--(7.286,1.226)--(7.287,1.224)--(7.289,1.222)--(7.290,1.220)--(7.292,1.218)%
--(7.293,1.215)--(7.295,1.213)--(7.296,1.211)--(7.298,1.209)--(7.299,1.206)--(7.301,1.204)%
--(7.302,1.202)--(7.304,1.200)--(7.305,1.197)--(7.307,1.195)--(7.308,1.193)--(7.310,1.191)%
--(7.311,1.189)--(7.313,1.186)--(7.314,1.184)--(7.316,1.182)--(7.317,1.180)--(7.319,1.178)%
--(7.320,1.175)--(7.322,1.173)--(7.323,1.171)--(7.324,1.169)--(7.326,1.167)--(7.327,1.164)%
--(7.329,1.162)--(7.330,1.160)--(7.332,1.158)--(7.333,1.156)--(7.335,1.154)--(7.336,1.151)%
--(7.338,1.149)--(7.339,1.147)--(7.340,1.145)--(7.342,1.143)--(7.343,1.141)--(7.345,1.138)%
--(7.346,1.136)--(7.348,1.134)--(7.349,1.132)--(7.350,1.130)--(7.352,1.128)--(7.353,1.126)%
--(7.355,1.123)--(7.356,1.121)--(7.358,1.119)--(7.359,1.117)--(7.360,1.115)--(7.362,1.113)%
--(7.363,1.111)--(7.365,1.109)--(7.366,1.106)--(7.368,1.104)--(7.369,1.102)--(7.370,1.100)%
--(7.372,1.098)--(7.373,1.096)--(7.375,1.094)--(7.376,1.092)--(7.377,1.090)--(7.379,1.087)%
--(7.380,1.085)--(7.382,1.083)--(7.383,1.081)--(7.384,1.079)--(7.386,1.077)--(7.387,1.075)%
--(7.389,1.073)--(7.390,1.071)--(7.391,1.069)--(7.393,1.067)--(7.394,1.064)--(7.395,1.062)%
--(7.397,1.060)--(7.398,1.058)--(7.400,1.056)--(7.401,1.054)--(7.402,1.052)--(7.404,1.050)%
--(7.405,1.048)--(7.406,1.046)--(7.408,1.044)--(7.409,1.042)--(7.411,1.040)--(7.412,1.038)%
--(7.413,1.036)--(7.415,1.034)--(7.416,1.031)--(7.417,1.029)--(7.419,1.027)--(7.420,1.025)%
--(7.421,1.023)--(7.423,1.021)--(7.424,1.019)--(7.426,1.017)--(7.427,1.015)--(7.428,1.013)%
--(7.430,1.011)--(7.431,1.009)--(7.432,1.007)--(7.434,1.005)--(7.435,1.003)--(7.436,1.001)%
--(7.438,0.999)--(7.439,0.997)--(7.440,0.995)--(7.442,0.993)--(7.443,0.991)--(7.444,0.989)%
--(7.446,0.987)--(7.447,0.985);
\gpcolor{rgb color={0.000,0.000,0.000}}
\node[gp node right,font={\fontsize{10.0pt}{12.0pt}\selectfont}] at (4.812,1.357) {Asymptotes};
\gpcolor{rgb color={1.000,0.000,1.000}}
\draw[gp path] (1.688,1.357)--(2.604,1.357);
\draw[gp path] (1.320,5.631)--(4.384,5.631);
\draw[gp path] (4.384,5.631)--(7.447,0.985);
\gpcolor{rgb color={0.000,0.000,0.000}}
\gpsetpointsize{8.00}
\gppoint{gp mark 2}{(4.384,5.631)}
\gpdefrectangularnode{gp plot 1}{\pgfpoint{1.320cm}{0.985cm}}{\pgfpoint{7.447cm}{5.631cm}}
\end{tikzpicture}
\end{figure}

Figure 1 illustrates the Bode plot and its associated ``stick diagram'' (comprised of asymptotic gains) for a single pole at $ s=-1$ . We see that the response is flat for low frequencies, drops to $ -3$ dB at the break frequency $ \omega=1$ , and approaches the $ -20$ dB per decade asymptote, reaching the asymptote quite well by one decade above the break frequency at $ \omega=10$ .

For a general filter transfer function having $ N$ poles $ p_n$ and $ M$ zeros $ z_m$

$\displaystyle H(s) = g\frac{\prod_{m=1}^M (s-z_m)}{\prod_{n=1}^N (s-p_n)}$ (4)

the Bode plot can be expressed as

$\displaystyle \tilde{B}({\tilde{\omega}}) = g_1 \log_{b_1} H\left(jb_2^{\log_{b_2}(\omega)}\right) = \tilde{G}({\tilde{\omega}}) + j\Theta({\tilde{\omega}}),
$

where $ g_1=20$ , $ b_1=10$ , $ {\tilde{\omega}}=\log_{b_2}(\omega)$ , and $ b_2$ is typically $ 2$ or $ 10$ . For mathematical simplicity, however, we'll choose instead $ g_1=1$ and $ b_1=b_2=e$ , giving

$\displaystyle \tilde{B}({\tilde{\omega}}) = \ln H\left(je^{\tilde{\omega}}\right) = \tilde{G}({\tilde{\omega}}) + j\Theta({\tilde{\omega}}),
$

where $ {\tilde{\omega}}= \ln(\omega)$ . In this choice of units, $ N$ integrators $ H(s)=1/s^N$ give a magnitude roll-off of $ -N$ ``nepers per neper'', while $ M$ differentiators $ H(s)=s^M$ give a slope of $ +M$ in the Bode magnitude plot

$\displaystyle \tilde{G}({\tilde{\omega}}) =$   $\displaystyle \mbox{re\ensuremath{\left\{\tilde{B}({\tilde{\omega}})\right\}}}$$\displaystyle =$   $\displaystyle \mbox{re\ensuremath{\left\{\ln H\left(je^{\tilde{\omega}}\right)\right\}}}$$\displaystyle .$ (5)

Our problem is to find poles and zeros of $ H(s)$ to minimize some norm of the error

$\displaystyle \left\Vert W({\tilde{\omega}})\left[\tilde{G}'({\tilde{\omega}}) - \alpha \right]\right\Vert
$

where $ \tilde{G}'({\tilde{\omega}})=d\,\tilde{G}({\tilde{\omega}})/d{\tilde{\omega}}$ denotes the derivative of $ \tilde{G}({\tilde{\omega}})$ with respect to $ {\tilde{\omega}}$ , $ \alpha$ is the desired slope of the log-magnitude frequency-response $ \tilde{G}'$ versus log frequency $ {\tilde{\omega}}$ , and $ W({\tilde{\omega}})$ denotes a real, nonnegative weighting function.

As a specific example, for the Chebyshev norm and a uniform weighting $ W({\tilde{\omega}})\equiv 1$ between frequencies $ {\tilde{\omega}}_1$ and $ {\tilde{\omega}}_2$ , we have

$\displaystyle \min_H\left\{\max_{{\tilde{\omega}}\in[{\tilde{\omega}}_1,{\tilde{\omega}}_2]} \left\vert\tilde{G}'({\tilde{\omega}}) - \alpha \right\vert\right\}.
$

That is, we wish to minimize the worst-case deviation between the desired slope $ \alpha$ and the achieved slope $ \tilde{G}'({\tilde{\omega}})$ over a specific (audio) band $ [{\tilde{\omega}}_1,{\tilde{\omega}}_2]$ .


Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download spectilt.pdf
[Comment on this page via email]

``Spectral Tilt Filters'', by Julius O. Smith IIIand Harrison F. Smith, adapted from arXiv.org publication arXiv:1606.06154 [cs.CE]
Copyright © 2024-07-02 by Julius O. Smith IIIand Harrison F. Smith
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA