Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Mean



Definition: The mean of a stochastic process $ v(n)$ at time $ n$ is defined as the expected value of $ v(n)$ :

$\displaystyle \mu_{v(n)} \isdef E\{v(n)\} \isdef \int_{-\infty}^\infty x p_{v(n)}(x) dx$ (C.16)

where $ p_{v(n)}(x)$ is the probability density function for the random variable $ v(n)$ .

For a stationary stochastic process $ v$ , the mean is given by the expected value of $ v(n)$ for any $ n$ . I.e., $ \mu_v = E\{v(n)\}$ for all $ n$ .


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]
[Lecture Video]  [Exercises]  [Examination]  
``Spectral Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2011, ISBN 978-0-9745607-3-1.
Copyright © 2014-03-23 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA