The previous result can be extended toward bandlimited interpolation of which includes all nonzero samples from an arbitrary time-limited signal (i.e., going beyond the interpolation of only periodic bandlimited signals given one or more periods ) by
Equation (7.8) can provide the basis for a high-quality sampling-rate conversion algorithm. Arbitrarily long signals can be accommodated by breaking them into segments of length , applying the above algorithm to each block, and summing the up-sampled blocks using overlap-add. That is, the lowpass filter ``rings'' into the next block and possibly beyond (or even into both adjacent time blocks when is not causal), and this ringing must be summed into all affected adjacent blocks. Finally, the filter can ``window away'' more than the top copies of in , thereby preparing the time-domain signal for downsampling, say by :
where now the lowpass filter frequency response must be close to zero for all . While such a sampling-rate conversion algorithm can be made more efficient by using an FFT in place of the DFT (see Appendix A), it is not necessarily the most efficient algorithm possible. This is because (1) out of output samples from the IDFT need not be computed at all, and (2) has many zeros in it which do not need explicit handling. For an introduction to time-domain sampling-rate conversion (bandlimited interpolation) algorithms which take advantage of points (1) and (2) in this paragraph, see, e.g., Appendix D and [75].