Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Physical Derivation of Series Reflection Coefficient

Physically, the force-wave reflection coefficient seen at port $ i$ of a series adaptor is due to an impedance step from $ R_i$, that of the port interface, to a new impedance consisting of the series combination of all other port impedances meeting at the junction. Let

$\displaystyle R_J(i) \isdef \sum_{i\neq j} R_i \protect$ (N.35)

denote this series combination. Then we must have, as in Eq. (N.25),

$\displaystyle \rho_i = \frac{R_J(i)-R_i}{R_J(i)+R_i}$ (N.36)

Let's check this ``physical'' derivation against the formal definition Eq. (N.31) leading to $ \rho^v_i = \beta_i - 1$ in Eq. (N.33). Define the total junction impedance as

$\displaystyle R_J \isdef \sum_{j=1}^N R_j
$

This is the series combination of all impedances connected to the junction. Then by Eq. (N.35), $ R_J = R_i + R_J(i)$ for all $ i$. From Eq. (N.26), the velocity reflection coefficient is given by

\begin{eqnarray*}
\rho^v_i &\isdef & \beta_i - 1
\;\isdef \; \frac{2R_i}{R_J} -...
..._J(i)}\\
&=& \frac{R_i - R_J(i)}{R_i + R_J(i)}\\
&=& -\rho_i
\end{eqnarray*}

Since

$\displaystyle \rho^v_i\isdef \frac{v^{-}_i(n)}{v^{+}_i(n)} = \frac{-f^{{-}}_i(n)/R_i}{f^{{+}}_i(n)/R_i}
= - \frac{f^{{-}}_i(n)}{f^{{+}}_i(n)} \isdef -\rho_i
$

the result follows.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]