Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Reflection Coefficient, Series Case

The velocity!reflection coefficient seen at port $ i$ is defined as

$\displaystyle \rho^v_i \isdef \left. \frac{v^{-}_i(n)}{v^{+}_i(n)} \right\vert _{v^{+}_j(n)=0, \forall j\neq i} \protect$ (N.31)

Representing the outgoing velocity wave $ v^{-}_i(n)$ as the superposition of the reflected wave $ \rho^v_iv^{+}_i(n)$ plus the $ N-1$ transmitted waves from the other ports, we have

$\displaystyle v^{-}_i(n) = \rho^v_i v^{+}_i + \sum_{j\neq i} \tau^v_{ji} v^{+}_j \protect$ (N.32)

where $ \tau^v_{ji}$ denotes the velocity!transmission coefficient from port $ j$ to port $ i$. Substituting Eq. (N.29) into Eq. (N.30) yields

\begin{eqnarray*}
v^{-}_i(n) &=& v_J(n) - v^{+}_i(n)\\
&=& \left(\sum_{j=1}^N ...
... &=& (\beta_i - 1)v^{+}_i(n) + \sum_{j\neq i} \beta_j v^{+}_j(n)
\end{eqnarray*}

Equating like terms with Eq. (N.32) gives

$\displaystyle \rho^v_i$ $\displaystyle =$ $\displaystyle \beta_i - 1
\protect$ (N.33)
$\displaystyle \tau^v_{ji}$ $\displaystyle =$ $\displaystyle \beta_j, \quad (i\neq j)$ (N.34)

Thus, the $ j$th beta parameter is the velocity transmission coefficient from $ j$th port to any other port (besides the $ i$th). To convert the transmission coefficient from the $ i$th port to the reflection coefficient for that port, we simply subtract 1. These relationships are specific to velocity waves at a series junction (cf. Eq. (N.22)). They are exactly the dual of Equations (N.22-N.23) for force waves at a parallel junction.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]