Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Beta Parameters

It is customary in the wave digital filter literature to define the beta parameters as

$\displaystyle \fbox{$\displaystyle \beta_i \isdef \frac{2R_i}{\sum_{j=1}^N R_j}$} \protect$ (N.26)

where $ R_i$ are the port impedances (attached element reference impedances). In terms of the beta parameters, the force-wave series adaptor performs the following computations:
$\displaystyle v_J(n)$ $\displaystyle =$ $\displaystyle \sum_{i=1}^N \beta_i v^{+}_i(n)\protect$ (N.27)
$\displaystyle v^{-}_i(n)$ $\displaystyle =$ $\displaystyle v_J(n) - v^{+}_i(n)\protect$ (N.28)

However, we normally employ a mixture of parallel and series adaptors, while keeping a force-wave simulation. Since $ f^{{+}}_i(n) = R_i
v^{+}_i(n)$, we obtain, after a small amount of algebra, the following recipe for the series force-wave adaptor:

$\displaystyle f^{{+}}_J(n)$ $\displaystyle =$ $\displaystyle \sum_{i=1}^N f^{{+}}_i(n)\protect$ (N.29)
$\displaystyle f^{{-}}_i(n)$ $\displaystyle =$ $\displaystyle f^{{+}}_i(n) - \beta_if^{{+}}_J(n)\protect$ (N.30)

We see that we have $ N$ multiplies and $ 2N-1$ additions as in the parallel-adaptor case. However, we again have from Eq. (N.26) that

$\displaystyle \sum_{i=1}^N \beta_i = 2,
$

so that we may implement one beta parameter as 2 minus the sum of the rest, thus eliminating a multiplication by creating a dependent port.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]