Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Physical Derivation of Reflection Coefficient

Physically, the reflection coefficient seen at port $ i$ is due to an impedance step from $ R_i$, that of the port interface, to a new impedance consisting of the parallel combination of all other port impedances meeting at the junction. Let

$\displaystyle \Gamma _J(i) \isdef \sum_{i\neq j} \Gamma _i \protect$ (N.24)

denote this parallel combination, in admittance form. Then we must have

$\displaystyle \rho_i = \frac{R_J(i)-R_i}{R_J(i)+R_i} = \frac{\Gamma _i-\Gamma _J(i)}{\Gamma _i+\Gamma _J(i)} \protect$ (N.25)

Let's check this ``physical'' derivation against the formal definition Eq. (N.20) leading to $ \rho_i = \alpha_i - 1$ in Eq. (N.22). Toward this goal, let

$\displaystyle \Gamma _J \isdef \sum_{j=1}^N \Gamma _j
$

denote the parallel combination of all admittances connected to the junction. Then by Eq. (N.24), we have $ \Gamma _J = \Gamma _i + \Gamma _J(i)$ for all $ i$. Now, from Eq. (N.17),

\begin{eqnarray*}
\rho_i &\isdef & \alpha_i - 1
\;\isdef \; \frac{2\Gamma _i}{\...
..._i + \Gamma _J(i)}
\;=\; \frac{R_J(i) - R_i}{\Gamma _J(i)-R_i}
\end{eqnarray*}

and the result is verified.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]