Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Acoustic Energy Density

The two forms of energy in a wave are kinetic and potential:

\begin{eqnarray*}
w_v &=& \frac{1}{2} \rho v^2 = \frac{1}{2c} R v^2 \quad\left(\...
...ad\left(\frac{\mbox{\small Energy}}{\mbox{\small Volume}}\right)
\end{eqnarray*}

These are called the acoustic kinetic energy density and the acoustic potential energy density, respectively. In a plane wave, where $ p=Rv$ and $ I=pv$, we have

\begin{eqnarray*}
w_v &=& \frac{1}{2c} R v^2 = \frac{1}{2}\cdot \frac{I}{c}\\
w_p &=& \frac{1}{2c} \frac{p^2}{R} = \frac{1}{2} \cdot \frac{I}{c}.
\end{eqnarray*}

Thus, half of the acoustic intensity $ I$ in a plane wave is kinetic, and the other half is potential:E.11

$\displaystyle \frac{I}{c} = w = w_v+w_p = 2w_v = 2w_p
$

Note that acoustic intensity $ I$ has units of energy per unit area per unit time while the acoustic energy density $ w=I/c$ has units of energy per unit volume.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]