Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Acoustic Intensity

Acoustic intensity may be defined by

$\displaystyle \zbox {\underline{I} \isdef p \underline{v}}
\quad \left(\frac{\m...
...ox{\small Time}} =
\frac{\mbox{\small Power Flux}}{\mbox{\small Area}}\right)
$

where

\begin{eqnarray*}
p &=& \mbox{acoustic pressure} \quad \left(\frac{\mbox{\small ...
...uad \left(\frac{\mbox{\small Length}}{\mbox{\small Time}}\right)
\end{eqnarray*}

For a plane traveling wave, we have

$\displaystyle \zbox {p = R v}
$

where

$\displaystyle \zbox {R \isdef \rho c}
$

is called the wave impedance of air, and

\begin{eqnarray*}
c &=& \mbox{sound speed},\\
\rho &=& \mbox{mass density of ai...
...ume}}\right),\\
v &\isdef & \left\vert\underline{v}\right\vert.
\end{eqnarray*}

Therefore, in a plane wave,

$\displaystyle \zbox {I = p v = Rv^2 = \frac{p^2}{R}.}
$


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]