Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Mass Moment of Inertia as a Cross Product

In Eq.(B.14) above, the mass moment of inertia was expressed in terms of orthogonal projection as $ I = mR^2 = m\cdot
\vert\vert\,\underline{x}-{\cal P}_{\underline{\omega}}(\underline{x})\,\vert\vert ^2 = m\cdot
\vert\vert\,\underline{x}-(\underline{\tilde{\omega}}^T\underline{x})\underline{\tilde{\omega}}\,\vert\vert ^2$ , where $ \underline{\tilde{\omega}}\isdeftext \underline{\omega}/ \vert\vert\,\underline{\omega}\,\vert\vert $ . In terms of the vector cross product, we can now express it as

$\displaystyle I \eqsp m\cdot(\underline{\tilde{\omega}}\times \underline{x})^2 \eqsp
m\cdot\left[\left\Vert\,\underline{\tilde{\omega}}\,\right\Vert\cdot\left\Vert\,\underline{x}\,\right\Vert\cdot\sin(\theta_{\underline{\tilde{\omega}}\underline{x}})\right]^2
\eqsp mR^2
$

where $ R= \vert\vert\,\underline{x}\,\vert\vert \sin(\theta_{\underline{\tilde{\omega}}\underline{x}})$ is the distance from the rotation axis out to the point $ \underline {x}$ (which equals the length of the vector $ \underline{x}-{\cal P}_{\underline{\omega}}(\underline{x})$ ).


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Physical Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2010, ISBN 978-0-9745607-2-4
Copyright © 2024-06-28 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA