Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Stability of Nonlinear Feedback Loops

In general, placing a memoryless nonlinearity $ f(x)$ in a stable feedback loop preserves stability provided the gain of the nonlinearity is less than one, i.e., $ \vert f(x)\vert\le \vert x\vert$ . A simple proof for the case of a loop consisting of a continuous-time delay-line and memoryless-nonlinearity is as follows.

The delay line can be interpreted as a waveguide model of an ideal string or acoustic pipe having wave impedance $ R>0$ and a noninverting reflection at its midpoint. A memoryless nonlinearity is a special case of an arbitrary time-varying gain [452]. By hypothesis, this gain has magnitude less than one. By routing the output of the delay line back to its input, the gain plays the role of a reflectance $ g$ at the ``other end'' of the ideal string or acoustic pipe. We can imagine, for example, a terminating dashpot with randomly varying positive resistance $ \mu(t)>0$ . The set of all $ \mu>0$ corresponds to the set of real reflection coefficients $ g=(\mu-R)/(\mu+R)$ in the open interval $ (-1,1)$ . Thus, each instantaneous nonlinearity-gain $ -1<g<1$ corresponds to some instantaneously positive resistance $ \mu>0$ . The whole system is therefore passive, even as $ \mu(t)$ changes arbitrarily (while remaining positive). (It is perhaps easier to ponder a charged capacitor $ C$ terminated on a randomly varying resistor $ R(t)$ .) This proof method immediately extends to nonlinear feedback around any transfer function that can be interpreted as the reflectance of a passive physical system, i.e., any transfer function $ H(s)$ for which the gain is bounded by 1 at each frequency, viz., $ \vert H(j\omega)\vert\le 1$ .

The finite-sampling-rate case can be embedded in a passive infinite-sampling-rate case by replacing each sample with a constant pulse lasting $ T$ seconds (in the delay line). The continuous-time memoryless nonlinearity $ g[x(t)]$ is similarly a held version of the discrete-time case $ g[x(nT)]$ . Since the discrete-time case is a simple sampling of the (passive) continuous-time case, we are done.

Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Physical Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2010, ISBN 978-0-9745607-2-4.
Copyright © 2017-02-20 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University