Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Reflection Coefficient, Parallel Case

The reflection coefficient seen at port $ i$ is defined as

$\displaystyle \rho_i \isdef \left. \frac{f^{{-}}_i(n)}{f^{{+}}_i(n)} \right\vert _{f^{{+}}_j(n)=0, \forall j\neq i} \protect$ (F.17)

In other words, the reflection coefficient specifies what portion of the incoming wave $ f^{{+}}_i(n)$ is reflected back to port $ i$ as part of the outgoing wave $ f^{{-}}_i(n)$ . The total outgoing wave on port $ i$ is the superposition of the reflected wave and the $ N-1$ transmitted waves from the other ports:

$\displaystyle f^{{-}}_i(n) = \rho_i f^{{+}}_i + \sum_{j\neq i} \tau_{ji} f^{{+}}_j \protect$ (F.18)

where $ \tau_{ji}$ denotes the transmission coefficient from port $ j$ to port $ i$ . Starting with Eq.(F.16) and substituting Eq.(F.15) gives

f^{{-}}_i(n) &=& f_J(n) - f^{{+}}_i(n)\\
&=& \left(\sum_{j=1}^N \alpha_j f^{{+}}_j(n)\right) - f^{{+}}_i(n)\\
&=& (\alpha_i - 1)f^{{+}}_i(n) + \sum_{j\neq i} \alpha_j f^{{+}}_j(n)

Equating like terms with Eq.(F.18), we obtain

$\displaystyle \rho_i$ $\displaystyle =$ $\displaystyle \alpha_i - 1
\protect$ (F.19)
$\displaystyle \tau_{ji}$ $\displaystyle =$ $\displaystyle \alpha_j, \quad (i\neq j)
\protect$ (F.20)

Thus, the $ j$ th alpha parameter is the force transmission coefficient from $ j$ th port to any other port (besides the $ i$ th). To convert the transmission coefficient from the $ i$ th port to the reflection coefficient for that port, we simply subtract 1. This general relationship is specific to force waves at a parallel junction, as we will soon see.

Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Physical Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2010, ISBN 978-0-9745607-2-4
Copyright © 2024-06-28 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University