Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Physical Derivation of Reflection Coefficient

Physically, the reflection coefficient seen at port $ i$ is due to an impedance step from $ R_i$ , that of the port interface, to a new impedance consisting of the parallel combination of all other port impedances meeting at the junction. Let

$\displaystyle \Gamma _J(i) \isdef \sum_{i\neq j} \Gamma _i \protect$ (F.21)

denote this parallel combination, in admittance form. Then we must have

$\displaystyle \rho_i = \frac{R_J(i)-R_i}{R_J(i)+R_i} = \frac{\Gamma _i-\Gamma _J(i)}{\Gamma _i+\Gamma _J(i)} \protect$ (F.22)

Let's check this ``physical'' derivation against the formal definition Eq.(F.17) leading to $ \rho_i = \alpha_i - 1$ in Eq.(F.19). Toward this goal, let

$\displaystyle \Gamma _J \isdef \sum_{j=1}^N \Gamma _j
$

denote the parallel combination of all admittances connected to the junction. Then by Eq.(F.21), we have $ \Gamma _J = \Gamma _i + \Gamma _J(i)$ for all $ i$ . Now, from Eq.(F.14),

\begin{eqnarray*}
\rho_i &\isdef & \alpha_i - 1
\;\isdef \; \frac{2\Gamma _i}{\Gamma _J} - 1\\
&\isdef & \frac{2\Gamma _i - \Gamma _J}{\Gamma _J}
\;=\; \frac{2\Gamma _i - \left[\Gamma _i + \Gamma _J(i)\right]}{\Gamma _i + \Gamma _J(i)}\\
&=& \frac{\Gamma _i - \Gamma _J(i)}{\Gamma _i + \Gamma _J(i)}
\;=\; \frac{R_J(i) - R_i}{R_J(i)-R_i}
\end{eqnarray*}

and the result is verified.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Physical Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2010, ISBN 978-0-9745607-2-4
Copyright © 2024-06-28 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA