In the previous section, we found when is real. This fact is of high practical importance. It says that the spectrum of every real signal is Hermitian. Due to this symmetry, we may discard all negative-frequency spectral samples of a real signal and regenerate them later if needed from the positive-frequency samples. Also, spectral plots of real signals are normally displayed only for positive frequencies; e.g., spectra of sampled signals are normally plotted over the range 0 Hz to Hz. On the other hand, the spectrum of a complex signal must be shown, in general, from to (or from 0 to ), since the positive and negative frequency components of a complex signal are independent.
Recall from §7.3 that a signal is said to be even if , and odd if . Below are are Fourier theorems pertaining to even and odd signals and/or spectra.
Theorem: If
, then
re
is even and
im
is odd.
Proof: This follows immediately from the conjugate symmetry of
for real signals
.
Theorem: If
,
is even and
is odd.
Proof: This follows immediately from the conjugate symmetry of
expressed
in polar form
.
The conjugate symmetry of spectra of real signals is perhaps the most important symmetry theorem. However, there are a couple more we can readily show:
Theorem: An even signal has an even transform:
Proof:
Express
in terms of its real and imaginary parts by
. Note that for a complex signal
to be even, both its real and
imaginary parts must be even. Then
Theorem: A real even signal has a real even transform:
Proof: This follows immediately from setting
in the preceding
proof. From Eq.(7.5), we are left with
Thus, the DFT of a real and even function reduces to a type of cosine transform,7.13
Instead of adapting the previous proof, we can show it directly:
Definition: A signal with a real spectrum (such as any real, even signal)
is often called a zero phase signal. However, note that when
the spectrum goes negative (which it can), the phase is really
, not 0
. When a real spectrum is positive at dc (i.e.,
), it is then truly zero-phase over at least some band
containing dc (up to the first zero-crossing in frequency). When the
phase switches between 0
and
at the zero-crossings of the
(real) spectrum, the spectrum oscillates between being zero phase and
``constant phase''. We can say that all real spectra are
piecewise constant-phase spectra, where the two constant values
are 0
and
(or
, which is the same phase as
). In
practice, such zero-crossings typically occur at low magnitude, such
as in the ``side-lobes'' of the DTFT of a ``zero-centered symmetric
window'' used for spectrum analysis (see Chapter 8 and Book IV
[73]).