Our first example is an FFT of the simple sinusoid

where we choose (frequency Hz) and (sampling rate set to 1). Since we're using a Cooley-Tukey FFT, the signal length should be a power of for fastest results. Here is the Matlab code:

% Example 1: FFT of a DFT-sinusoid % Parameters: N = 64; % Must be a power of two T = 1; % Set sampling rate to 1 A = 1; % Sinusoidal amplitude phi = 0; % Sinusoidal phase f = 0.25; % Frequency (cycles/sample) n = [0:N-1]; % Discrete time axis x = A*cos(2*pi*n*f*T+phi); % Sampled sinusoid X = fft(x); % Spectrum % Plot time data: figure(1); subplot(3,1,1); plot(n,x,'*k'); ni = [0:.1:N-1]; % Interpolated time axis hold on; plot(ni,A*cos(2*pi*ni*f*T+phi),'-k'); grid off; title('Sinusoid at 1/4 the Sampling Rate'); xlabel('Time (samples)'); ylabel('Amplitude'); text(-8,1,'a)'); hold off; % Plot spectral magnitude: magX = abs(X); fn = [0:1/N:1-1/N]; % Normalized frequency axis subplot(3,1,2); stem(fn,magX,'ok'); grid on; xlabel('Normalized Frequency (cycles per sample))'); ylabel('Magnitude (Linear)'); text(-.11,40,'b)'); % Same thing on a dB scale: spec = 20*log10(magX); % Spectral magnitude in dB subplot(3,1,3); plot(fn,spec,'--ok'); grid on; axis([0 1 -350 50]); xlabel('Normalized Frequency (cycles per sample))'); ylabel('Magnitude (dB)'); text(-.11,50,'c)'); cmd = ['print -deps ', '../eps/example1.eps']; disp(cmd); eval(cmd);

The results are shown in Fig.8.1. The time-domain signal is shown in the upper plot (Fig.8.1a), both in pseudo-continuous and sampled form. In the middle plot (Fig.8.1b), we see two peaks in the magnitude spectrum, each at magnitude on a linear scale, located at normalized frequencies and . A spectral peak amplitude of is what we expect, since

and when , this reduces to

For and , this happens at bin numbers and . However, recall that array indexes in matlab start at , so that these peaks will really show up at indexes and in the

The spectrum should be exactly zero at the other bin numbers. How accurately this happens can be seen by looking on a dB scale, as shown in Fig.8.1c. We see that the spectral magnitude in the other bins is on the order of dB lower, which is close enough to zero for audio work .

[How to cite this work] [Order a printed hardcopy] [Comment on this page via email]

Copyright ©

Center for Computer Research in Music and Acoustics (CCRMA), Stanford University