Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Bibliography

1
J. Abel, T. Smyth, and J. Smith, ``A simple, accurate wall loss filter for acoustic tubes,'' Proceedings of the Conference on Digital Audio Effects (DAFx-03), Queen Mary, University of London, 2003,
http: //www.dafx.de/.

2
S. Adachi and M. Sato, ``Time-domain simulation of sound production in the brass instrument,'' Journal of the Acoustical Society of America, vol. 97, pp. 3850-3861, 1995.

3
S. Adachi and M. Sato, ``Trumpet sound simulation using a two-dimensional lip vibration model,'' Journal of the Acoustical Society of America, vol. 99, pp. 1200-1209, 1996.

4
J.-M. Adrien, ``The missing link: Modal synthesis,'' in Representations of Musical Signals (G. De Poli, A. Picialli, and C. Roads, eds.), pp. 269-297, Cambridge, MA: MIT Press, 1991.

5
X. Amatriain, J. Bonada, A. Loscos, and X. Serra, ``Spectral processing,'' in DAFX - Digital Audio Effects (U. Zölzer, ed.), pp. 373-438, West Sussex, England: John Wiley and Sons, LTD, 2002,
http: //www.dafx.de/.

6
N. Amir, G. Rosenhouse, and U. Shimony, ``Discrete model for tubular acoustic systems with varying cross section - the direct and inverse problems. Part 1: Theory, and Part 2: Experiment,'' Acta Acustica, vol. 81, pp. 450-474, 1995.

7
M. Aramaki, J. Bensa, L. Daudet, P. Guillemain, and R. Kronland-Martinet, ``Resynthesis of coupled piano string vibrations based on physical modeling,'' Journal of New Music Research, vol. 30, no. 3, pp. 213-26, 2001.

8
A. Askenfelt, ed., Five Lectures on the Acoustics of the Piano,
Stockholm: Royal Swedish Academy of Music, 1990,
lectures by H. A. Conklin, Anders Askenfelt and E. Jansson, D. E. Hall, G. Weinreich, and K. Wogram. Sound example CD included. Publication number 64. http: //www.speech.kth.se/music/5_lectures/.

9
F. Avanzini and M. van Walstijn, ``Modelling the mechanical response of the reed-mouthpiece-lip system of a clarinet. Part I. a one-dimensional distributed model,'' Acustica - Acta Acustica, vol. 90, no. 3, 2003.

10
F. Avanzini, S. Serafin, and D. Rocchesso, ``Modeling interactions between rubbed dry surfaces using an elasto-plastic friction model,'' in Proceedings of the COST-G6 Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, pp. 111-116, September 2002,
http: //www.dafx.de/.

11
R. D. Ayers, L. J. Eliason, and D. Mahgerefteh, ``The conical bore in musical acoustics,'' American Journal of Physics, vol. 53, pp. 528-537, June 1985.

12
B. Bank and V. Välimäki, ``Robust loss filter design for digital waveguide synthesis of string tones,'' IEEE Signal Processing Letters, vol. 10, pp. 18-20, January 2003.

13
B. Bank, ``Physics-based sound synthesis of the piano,'' Master's thesis, Budapest University of Technology and Economics, Budapest, Department of Measurement and Information Systems, Hungary, May 2000,
published as Report 54 of Helsinki University of Technology, Laboratory of Acoustics and Audio Signal Processing, and http: //www.mit.bme.hu/~bank/thesis/.

14
B. Bank, F. Avanzini, G. Borin, G. D. Poli, F. Fontana, , and D. Rocchesso, ``Physically informed signal processing methods for piano sound synthesis: A research overview,'' EURASIP Journal on Applied Signal Processing, vol. 2003, Sept. 2003,
http: http://http://www.mit.bme.hu/~bank/publist/jasp03.pdf.

15
A. H. Benade, ``Equivalent circuits for conical waveguides,'' Journal of the Acoustical Society of America, vol. 83, pp. 1764-1769, May 1988.

16
A. H. Benade, Fundamentals of Musical Acoustics,
New York: Dover, 1990.

17
A. H. Benade and E. V. Jansson, ``On plane and spherical waves in horns with nonuniform flare. I. theory of radiation, resonance frequencies, and mode conversion,'' Acustica, vol. 31, no. 2, pp. 80-98, 1974.

18
G. Bennett and X. Rodet, ``Synthesis of the singing voice,'' in Current Directions in Computer Music Research (M. V. Mathews and J. R. Pierce, eds.), pp. 19-44, Cambridge, MA: MIT Press, 1989.

19
J. Bensa, K. Jensen, and R. Kronland-Martinet, ``A hybrid resynthesis model for hammer-strings interaction of piano tones,'' EURASIP Journal on Applied Signal Processing, Special Issue on Model-Based Sound Synthesis, vol. 2004, no. 7, pp. 1021-1035, 2004.

20
J. Bensa, Analysis and Synthesis of Piano Sounds using Physical and Signal Models,
PhD thesis, Université de la Méditérranée, Marseille, France, 2003,
http: //www.lma.cnrs-mrs.fr/~bensa/.

21
J. Bensa, S. Bilbao, R. Kronland-Martinet, and J. O. Smith, ``From the physics of piano strings to digital waveguides,'' in Proceedings of the 2002 International Computer Music Conference, Sweden, 2002.

22
J. Bensa, S. Bilbao, R. Kronland-Martinet, and J. O. Smith, ``The simulation of piano string vibration: from physical models to finite difference schemes and digital waveguides,'' Journal of the Acoustical Society of America, vol. 114(2), pp. 1095-1107, 2003.

23
D. P. Berners, Acoustics and Signal Processing Techniques for Physical Modeling of Brass Instruments,
PhD thesis, Elec. Engineering Dept., Stanford University (CCRMA), June 1999,
http: //ccrma.stanford.edu/~dpberner/.

24
R. T. Beyer, Nonlinear Acoustics,
American Institute of Physics, for the Acoustical Society of America, 1997 (orig. 1974),
http:.

25
S. Bilbao, Wave and Scattering Methods for the Numerical Integration of Partial Differential Equations,
PhD thesis, Stanford University, June 2001,
http: //ccrma.stanford.edu/~bilbao/.

26
G. Borin, G. De Poli, and A. Sarti, ``Musical signal synthesis,'' in Musical Signal Processing (C. Roads, S. T. Pope, A. Piccialli, and G. De Poli, eds.), pp. 5-30, Netherlands: Swets and Zietlinger, 1997.

27
M. Bosi and R. E. Goldberg, Introduction to Digital Audio Coding and Standards,
Boston: Kluwer Academic Publishers, 2003.

28
K. Brandenburg and M. Bosi, ``Overview of MPEG audio: Current and future standards for low-bit-rate audio coding,'' Journal of the Audio Engineering Society, vol. 45, pp. 4-21, Jan./Feb. 1997.

29
D. M. Campbell, ``Brass instruments es we know them today,'' in Proceedings of the Stockholm Musical Acoustics Conference (SMAC-03), http: //www.speech.kth.se/smac03/, (Stockholm), pp. 185-188, Royal Swedish Academy of Music, Aug. 2003.

30
R. Caussé, J. Kergomard, and X. Lurton, ``Input impedance of brass musical instruments--comparison between experiment and numerical models,'' Journal of the Acoustical Society of America, vol. 75, pp. 241-254, Jan. 1984.

31
A. Chaigne, ``On the use of finite differences for musical synthesis. application to plucked stringed instruments,'' Journal d'Acoustique, vol. 5, no. 2, pp. 181-211, 1992.

32
A. Chaigne and A. Askenfelt, ``Numerical simulations of piano strings. I. a physical model for a struck string using finite difference methods,'' Journal of the Acoustical Society of America, vol. 95, no. 2, pp. 1112-1118, 1994.

33
J. M. Chowning, ``Frequency modulation synthesis of the singing voice,'' in Current Directions in Computer Music Research (M. V. Mathews and J. R. Pierce, eds.), pp. 57-63, Cambridge, MA: MIT Press, 1989.

34
H. A. Conklin, ``Generation of partials due to nonlinear mixing in a stringed instrument,'' Journal of the Acoustical Society of America, vol. 105, pp. 536-545, 1999.

35
P. R. Cook, Identification of Control Parameters in an Articulatory Vocal Tract Model, with Applications to the Synthesis of Singing,
PhD thesis, Elec. Engineering Dept., Stanford University (CCRMA), Dec. 1990,
http: //www.cs.princeton.edu/~prc/.

36
P. R. Cook, ``Non-linear periodic prediction for on-line identification of oscillator characteristics in woodwind instruments,'' in Proceedings of the 1991 International Computer Music Conference, Montreal, pp. 157-160, Computer Music Association, 1991.

37
P. R. Cook, ``Tbone: An interactive waveguide brass instrument synthesis workbench for the NeXT machine,'' in Proceedings of the 1991 International Computer Music Conference, Montreal, pp. 297-299, Computer Music Association, 1991.

38
P. R. Cook, ``A meta-wind-instrument physical model, and a meta-controller for real time performance control,'' in Proceedings of the 1992 International Computer Music Conference, San Jose, pp. 273-276, Computer Music Association, 1992.

39
P. R. Cook, ``Singing voice synthesis: History, current work, and future directions,'' Computer Music Journal, vol. 20, pp. 38-46, Fall 1996.

40
P. R. Cook, ``Synthesis toolkit in C++, version 1.0,'' in SIGGRAPH Proceedings, Assoc. Comp. Mach., May 1996,
see http: //www.cs.princeton.edu/~prc/NewWork.html for a copy of this paper. The Synthesis Tool Kit (STK) software itself is distributed by CCRMA: http: //ccrma.stanford.edu/ccrma/Software/STK/.

41
P. R. Cook, Real Sound Synthesis for Interactive Applications,
A. K. Peters, L.T.D., 2002.

42
D. C. Copley and W. J. Strong, ``Stroboscopic sequences of lip vibrations in a trombone,'' in Proceedings of the International Symposium on Musical Acoustics (ISMA-95), Dourdan, France, (France), pp. 42-46, Société Français d'Acoustique, July 1995.

43
L. Cremer, The Physics of the Violin,
Cambridge, MA: MIT Press, 1984.

44
J. Cullen, J. Gilbert, and D. M. Campbell, ``Brass instruments: Linear stability analysis and experiments with an artificial mouth,'' Acta Acustica, vol. 86, pp. 704-724, 2000.

45
J. P. Dalmont, C. J. Nederveen, and N. Joly, ``Radiation impedance of tubes with different flanges: Numerical and experimental investigations,'' Journal of Sound and Vibration, vol. 244, pp. 505-534, 2001.

46
J. P. Dalmont, C. J. Nederveen, V. Dubos, S. Ollivier, V.Méserette, and E. te Sligte, ``Experimental determination of the equivalent circuit of an open side hole: linear and nonlinear behaviour,'' Acustica - Acta Acustica, vol. 88, pp. 567-575, 2002.

47
J.-P. Dalmont, J. Gilbert, and S. Ollivier, ``Nonlinear characteristics of single-reed instruments: Quasistatic volume flow and reed opening measurements,'' Journal of the Acoustical Society of America, vol. 114, pp. 2253-2262, October 2003.

48
S. Dequand, J. F. H. Willems, M. Leroux, R. Vullings, M. van Weert, C. Thieulot, and A. Hirschberg, ``Experimental study of the influence of mouth geometry on sound production in a recorder-like instrument: Windway length and chamfers,'' Journal of the Acoustical Society of America, vol. 113, pp. 1724-1735, 2003.

49
G. Derveaux, A. Chaigne, P. Joly, and E. Bécache, ``Time-domain simulation of a guitar: Model and method,'' Journal of the Acoustical Society of America, vol. 114, pp. 3368-3383, Dec. 2003.

50
W. D'haes and X. Rodet, ``Physical constraints for the control of a physical model of a trumpet,'' in Proceedings of the COST-G6 Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002,
http: //www.ruca.ua.ac.be/visielab/papers/dhaes/DAFx02.pdf.

51
W. D'haes, X. Rodet, and D. van Dyck, ``Control parameter estimation for a physical model of a trumpet using pattern recognition,'' in Proc. 1st Benelux Workshop on Model based Processing and Coding of Audio (MPCA-2002), Leuven, Belgium, November 15 2002,
http: //www.ruca.ua.ac.be/visielab/papers/dhaes/MPCA02abstract.pdf.

52
V. Dubos, J. Kergomard, A. Khettabi, D. H. K. J. P. Dalmont, and C. J. Nederveen, ``Theory of sound propagation in a duct with a branched tube using modal decomposition,'' Acta Acustica, vol. 85, pp. 153-169, 1999.

53
E. Ducasse, ``An alternative to the traveling-wave approach for use in two-port descriptions of acoustic bores,'' Journal of the Acoustical Society of America, vol. 112, pp. 3031-3041, Dec. 2002.

54
C. Erkut, M. Karjalainen, P. Huang, and V. Välimäki, ``Acoustical analysis and model-based sound synthesis of the kantele,'' Journal of the Acoustical Society of America, vol. 112, pp. 1681-1691, October 2002.

55
C. Erkut, Aspects in Analysis and Model-Based Sound Synthesis of Plucked String Instruments,
Doctoral thesis, Helsinki University of Technology, Espoo, Finland, November 2002,
overview http: //lib.hut.fi/Diss/2002/isbn9512261901/.

56
G. Essl, Physical Wave Propagation Modeling for Real-Time Synthesis of Natural Sounds,
PhD thesis, Computer Science Dept., Princeton University, November 2002,
http: //ncstrl.cs.princeton.edu/expand.php?id=TR-659-02.

57
B. Fabre, ``From sound synthesis to instrument making: An overview of recent researches on woodwinds and organs,'' in Proceedings of the Stockholm Musical Acoustics Conference (SMAC-03), http: //www.speech.kth.se/smac03/, (Stockholm), pp. 239-242, Royal Swedish Academy of Music, Aug. 2003.

58
B. Fabre and A. Hirschberg, ``Physical modeling of flue instruments: a review of lumped models,'' Acta Acustica, vol. 86, pp. 599-610, 2000.

59
G. Fant, ``The LF-model revisited. transformations and frequency domain analysis,'' STL-QPSR, vol. 2-3, pp. 119-156, 1995.

60
A. Fettweis, ``Wave digital filters: Theory and practice,'' Proceedings of the IEEE, vol. 74, pp. 270-327, Feb. 1986.

61
N. H. Fletcher and T. D. Rossing, The Physics of Musical Instruments, Second Edition,
New York: Springer Verlag, 1998.

62
F. Fontana and D. Rocchesso, ``A new formulation of the 2D-waveguide mesh for percussion instruments,'' in Proceedings of the XI Colloquiun on Musical Informatics, (Bologna, Italy), pp. 27-30, Nov. 1995.

63
A. Gerzso, ``Density of spectral components: Preliminary experiments,'' tech. rep., IRCAM, 1978,
Report no. 31/80, abstract and ordering information on-line at http: //mediatheque.ircam.fr/articles/index-e.html.

64
J. Gilbert and J. F. Petiot, ``Brass instruments: Some theoretical and experimental results,'' in Proceedings of the International Symposium on Musical Acoustics (ISMA-97), Edinburgh, Scotland, pp. 391-400, 1997.

65
J. Gilbert, S. Ponthus, and J. F. Petiot, ``Artificial buzzing lips and brass instruments: Experimental results,'' Journal of the Acoustical Society of America, vol. 104, pp. 1627-1632, 1998.

66
B. R. Glasberg and B. C. J. Moore, ``A model of loudness applicable to time-varying sounds,'' Journal of the Audio Engineering Society, vol. 50, pp. 331-342, May 2002.

67
K. Guettler and A. Askenfelt, ``On the kinematics of spiccato and ricochet bowing,'' Catgut Acoustical Society Journal, Series II, vol. 3, pp. 9-15, Nov. 1998.

68
D. Halliday, R. Resnick, and J. Walker, Extended, Fundamentals of Physics, 6th Edition,
New York: John Wiley and Sons, Inc., 2000.

69
A. Härmä, M. Karjalainen, L. Savioja, V. Välimäki, U. K. Laine, and J. Huopaniemi, ``Frequency-warped signal processing for audio applications,'' Journal of the Audio Engineering Society, vol. 48, pp. 1011-1031, November 2000.

70
T. Hélie and M. Hasler, ``Representation of the weakly nonlinear propagation in air-filled pipes with Volterra series,'' in 11th InternationalIEEE Workshop on Nonlinear Dynamics of Electronic Systems, 2003.

71
T. Hélie and D. Matignon, ``Numerical simulation of acoustic waveguides for Webster-Lokshin model using diffusive representations,'' in Sixth InternationalConference onMath. and Numer. Aspects of Wave Prop. Phenomena, Jyväskylä, Finland, 2003.

72
T. Hélie and X. Rodet, ``Radiation of a pulsating portion of a sphere: Application to radiation of horns,'' Acustica - Acta Acustica, vol. 89, no. 4, pp. 565-577, 2003.

73
T. Hélie, C. Vergez, J. Lévine, and X. Rodet, ``Inversion of a physical model of a trumpet,'' in IEEE CDC: Conference on Decision and Control, (Phoenix Arizona, USA), Dec. 1999.

74
L. Hiller and P. Ruiz, ``Synthesizing musical sounds by solving the wave equation for vibrating objects. Part I.,'' Journal of the Audio Engineering Society, vol. 19, pp. 462-470, June 1971,
Part II: vol. 19, no. 7, pp. 542-551, July/Aug. 1971.

75
A. Hirschberg, ``A quasi-stationary model of air flow in the reed channel of single-reed woodwind instruments,'' Acustica, vol. 70, pp. 146-154, 1990.

76
A. Hirschberg, ``Aero-acoustics of wind instruments,'' in Mechanics of Musical Instruments (A. Hirschberg, J. Kergomard, and G. Weinreich, eds.), pp. 291-361, Berlin: Springer-Verlag, 1995.

77
A. Hirschberg, J. Gilbert, A. P. J. Wijnands, and A. J. M. Houtsma, ``Non-linear behavior of single-reed woodwind musical instruments,'' Nederlands Akoestisch Genootschap, vol. 107, pp. 31-43, March 1991.

78
A. Hirschberg, J. Kergomard, and G. Weinreich, eds., Mechanics of Musical Instruments,
Berlin: Springer-Verlag, 1995.

79
A. Hirschberg, J. G. R. Msallam, , and A. P. Wijnands, ``Shock waves in trombones,'' Journal of the Acoustical Society of America, vol. 99, pp. 1754-1758, March 1996.

80
P. Huang, S. Serafin, and J. Smith, ``Modeling high-frequency modes of complex resonators using a waveguide mesh,'' in Proceedings of the International Conference on Digital Audio Effects (DAFx-00), Verona, Italy, Dec. 2000,
http: //www.dafx.de/.

81
K. Ishizaka and J. L. Flanagan, ``Synthesis of voiced sounds from a two-mass model of the vocal cords,'' Bell System Technical Journal, vol. 51, pp. 1233-1268, 1972.

82
D. A. Jaffe, ``Ten criteria for evaluating synthesis and processing techniques,'' Computer Music Journal, vol. 19, no. 1, pp. 76-87, 1995,
Also: Proceedings of the First Brazilian Symposium of Computation and Music, Brazilian Society of Computation, Caxambu, MG. 53-61.

83
H. Järveläinen, Perception of Attributes in Real and Synthetic String Instrument Sounds,
Doctoral thesis, Helsinki University of Technology, Espoo, Finland, January 2003,
http: //lib.hut.fi/Diss/2003/isbn9512263149/.

84
H. Järveläinen, V. Välimäki, and M. Karjalainen, ``Audibility of inharmonicity in string instrument sounds, and implications to digital sound synthesis,'' in Proceedings of the 1999 International Computer Music Conference, Beijing, pp. 359-362, Oct. 22-27, 1999,
http: //www.acoustics.hut.fi/~hjarvela/publications/.

85
M. Karjalainen, V. Välimäki, and P. A. A. Esquef, ``Efficient Modeling and Synthesis of Bell-Like Sounds,'' in the 5th International Conference on Digital Audio Effects, (Hamburg, Germany), pp. 181-186, September 26-28 2002,
http: //www.unibw-hamburg.de/EWEB/ANT/dafx2002/papers.html.

86
M. Karjalainen, ``Time-domain physical modeling and real-time synthesis using mixed modeling paradigms,'' in Proceedings of the Stockholm Musical Acoustics Conference (SMAC-03), http: //www.speech.kth.se/smac03/, (Stockholm), pp. 393-396, Royal Swedish Academy of Music, Aug. 2003.

87
M. Karjalainen and C. Erkut, ``Digital waveguides vs. finite difference schemes: Equivalance and mixed modeling,'' EURASIP Journal on Applied Signal Processing, vol. 2004, pp. 978-989, June 15, 2004.

88
M. Karjalainen and J. O. Smith, ``Body modeling techniques for string instrument synthesis,'' in Proceedings of the 1996 International Computer Music Conference, Hong Kong, pp. 232-239, Computer Music Association, Aug. 1996.

89
M. Karjalainen, V. Välimäki, and T. Tolonen, ``Plucked string models: From the karplus-strong algorithm to digital waveguides and beyond,'' Computer Music Journal, vol. 22, pp. 17-32, Fall 1998,
http: //www.acoustics.hut.fi/~vpv/publications/cmj98.htm.

90
D. H. Keefe, ``Theory of the single woodwind tone hole. experiments on the single woodwind tone hole,'' Journal of the Acoustical Society of America, vol. 72, pp. 676-699, Sept. 1982.

91
D. H. Keefe, ``Woodwind air column models,'' Journal of the Acoustical Society of America, vol. 88, pp. 35-51, Jan. 1990.

92
J. Kemp, Theoretical and Experimental Study of Wave Propagation in Brass Musical Instruments,
PhD thesis, University of Edinburgh, 2002,
http: //www.ph.ed.ac.uk/~jonathan/thesis/.

93
J. Kergomard, ``Elementary considerations on reed-instrument oscillations,'' in Mechanics of Musical Instruments (A. Hirschberg, J. Kergomard, and G. Weinreich, eds.), pp. 229-114, Berlin: Springer-Verlag, 1995.

94
D. H. Klatt and L. C. Klatt, ``Analysis, synthesis, and perception of voice quality variations among female and make talkers,'' Journal of the Acoustical Society of America, vol. 87, no. 2, pp. 820-857, 1990.

95
A. Krishnaswamy and J. O. Smith, ``Inferring control inputs to an acoustic violin from audio spectra,'' in Proceedings of the International Conference on Multimedia Engineering, (New York), IEEE Press, 2003.

96
A. Krishnaswamy and J. O. Smith, ``Methods for simulating string collisions with rigid spatial objects,'' in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, (New York), IEEE Press, Oct. 2003.

97
J. Laird, P. Masri, and N. Canagarajah, ``Modelling diffusion at the boundary of a digital waveguide mesh,'' in Proceedings of the International Computer Music Conference, (Beijing, China), Oct. 1999.

98
M. Lang and T. I. Laakso, ``Simple and robust method for the design of allpass filters using least-squares phase error criterion,'' IEEE Transactions on Circuits and Systems--I: Fundamental Theory and Applications, vol. 41, no. 1, pp. 40-48, 1994.

99
M. Laurson and M. Kuuskankare, ``Aspects on time modification in score-based performance control,'' in Proceedings of the Stockholm Musical Acoustics Conference (SMAC-03), http: //www.speech.kth.se/smac03/, (Stockholm), pp. 545-548, Royal Swedish Academy of Music, Aug. 2003.

100
M. Laurson, C. Erkut, V. Välimäki, and M. Kuuskankare, ``Methods for Modeling Realistic Playing in Acoustic Guitar Synthesis,'' Computer Music Journal, vol. 25, no. 3, pp. 38-49, 2001,
http: //lib.hut.fi/Diss/2002/isbn9512261901/article6.pdf.

101
H. Levine and J. Schwinger, ``On the radiation of sound from an unflanged circular pipe,'' Physical Review, vol. 73, no. 4, pp. 383-406, 1948.

102
L. Ljung and T. L.Soderstrom, ``The Steiglitz-McBride algorithm revisited--convergence analysis and accuracy aspects,'' IEEE Transactions on Automatic Control, vol. 26, pp. 712-717, June 1981,
See also the function stmcb() in the Matlab Signal Processing Toolbox.

103
L. Ljung and T. L. Soderstrom, Theory and Practice of Recursive Identification,
Cambridge, MA: MIT Press, 1983.

104
H.-L. Lu, Toward a High-Quality Singing Synthesizer with Vocal Texture Control,
PhD thesis, Elec. Engineering Dept., Stanford University (CCRMA), July 2002,
http://ccrma.stanford.edu/~vickylu/thesis/.

105
H.-L. Lu and J. Smith, ``Glottal source modeling for singing voice synthesis,'' in Proceedings of the 2000 International Computer Music Conference, Berlin, Aug. 2000,
http: //ccrma.stanford.edu/~vickylu/research/glottalSource/glottal.htm.

106
H.-L. Lu and J. Smith, ``Estimating glottal aspiration noise via wavelet thresholding and best basis thresholding,'' in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, (New York), IEEE Press, Oct. 2001.

107
D. Massie, ``Wavetable sampling synthesis,'' in Applications of DSP to Audio & Acoustics (M. Kahrs and K. Brandenburg, eds.), pp. 311-341, Boston/Dordrecht/London: Kluwer Academic Publishers, 1998.

108
M. E. McIntyre, R. T. Schumacher, and J. Woodhouse, ``On the oscillations of musical instruments,'' Journal of the Acoustical Society of America, vol. 74, pp. 1325-1345, Nov. 1983.

109
B. C. J. Moore, An Introduction to the Psychology of Hearing,
New York: Academic Press, 1997.

110
P. M. Morse, Vibration and Sound,
http: //asa.aip.org/publications.html: American Institute of Physics, for the Acoustical Society of America, 1948,
1st edition 1936, last author's edition 1948, ASA edition 1981.

111
P. M. Morse and K. U. Ingard, Theoretical Acoustics,
New York: McGraw-Hill, 1968.

112
R. Msallam, S. Dequidt, R. Caussé, and S. Tassart, ``Physical model of the trombone including nonlinear effects. application to the sound synthesis of load tones,'' Acta Acustica, vol. 86, pp. 725-736, 2000.

113
C. J. Nederveen, J. K. M. Jansen, and R. R. van Hassel, ``Corrections for woodwind tone-hole calculations,'' Acta Acustica, vol. 84, pp. 957-966, 1998.

114
D. Noreland, Numerical Techniques for Acoustic Modelling and Design of Brass Wind Instruments,
PhD thesis, Faculty of Science and Engineering, Uppsala Universitet, 2002.

115
A. V. Oppenheim and R. W. Schafer, Digital Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

116
V. Pagneux, N. Amir, and J. Kergomard, ``A study of wave propagation in varying cross-section waveguides by modal decomposition. part 1. theory and validation,'' Journal of the Acoustical Society of America, vol. 100, no. 4, pp. 2034-2048, 1996.

117
B. H. Pandy, G. S. Settles, and J. D. Miller, ``Schlieren imaging of shock waves from a trumpet,'' Journal of the Acoustical Society of America, vol. 114, pp. 3363-3367, Dec. 2003.

118
A. D. Pierce, Acoustics,
American Institute of Physics, for the Acoustical Society of America, 1989,
http: //asa.aip.org/publications.html.

119
R. Pitteroff and J. Woodhouse, ``Mechanics of the contact area between a violin bow and a string, part ii: Simulating the bowed string,'' Acta Acustica, vol. 84, pp. 744-757, 1998.

120
R. Pitteroff and J. Woodhouse, ``Mechanics of the contact area between a violin bow and a string, part iii: Parameter dependence,'' Acta Acustica, vol. 84, pp. 929-946, 1998.

121
N. Porcaro, P. Scandalis, J. O. Smith, D. A. Jaffe, and T. Stilson, ``SynthBuilder--a graphical real-time synthesis, processing and performance system,'' in Proceedings of the 1995 International Computer Music Conference, Banff, pp. 61-62, Computer Music Association, 1995.

122
G. Putland, ``Every one-parameter acoustic field obeys webster's horn equation,'' Journal of the Audio Engineering Society, vol. 41, pp. 435-451, June 1993.

123
L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

124
R. Rideout, ``Yamaha VL1 virtual acoustic synthesizer,'' Keyboard Magazine, vol. 20, pp. 104-118, June 1994.

125
J. Riionheimo and V. Välimäki, ``Parameter estimation of a plucked string synthesis model using genetic algorithm with perceptual fitness calculation,'' EURASIP Journal on Applied Signal Processing, vol. 3, pp. 791-805, July 2003,
sound examples available at http: //www.acoustics.hut.fi/publications/papers/jasp-ga/.

126
C. Roads, The Computer Music Tutorial,
Cambridge, MA: MIT Press, 1996.

127
D. Rocchesso and F. Scalcon, ``Accurate dispersion simulation for piano strings,'' in Proc. Nordic Acoustical Meeting (NAM'96), (Helsinki, Finland), p. 9 pages, June 12-14 1996.

128
X. Rodet, ``One and two mass model oscillations for voice and instruments,'' in Proceedings of the 1995 International Computer Music Conference, Banff, pp. 207-214, Computer Music Association, 1995.

129
X. Rodet, Y. Potard, and J. Barrière, ``The chant project: From the synthesis of the singing voice to synthesis in general,'' in The Music Machine (C. Roads, ed.), pp. 449-465, Cambridge, MA: MIT Press, 1989.

130
T. D. Rossing, F. R. Moore, and P. A. Wheeler, The Science of Sound (3rd Edition),
Reading MA: Addison-Wesley, 2003.

131
P. M. Ruiz, A Technique for Simulating the Vibrations of Strings with a Digital Computer,
PhD thesis, Music Master Diss., Univ. Ill., Urbana, 1969.

132
L. Savioja, J. Backman, A. Järvinen, and T. Takala, ``Waveguide mesh method for low-frequency simulation of room acoustics,'' Proceedings of the 15th International Conference on Acoustics (ICA-95), Trondheim, Norway, pp. 637-640, June 1995.

133
L. Savioja and V. Välimäki, ``Reduction of the dispersion error in the interpolated digital waveguide mesh using frequency warping,'' in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Phoenix, vol. 2, (New York), pp. 973-976, IEEE Press, March 15-19 1999,
http: //www.acoustics.hut.fi/~vpv/publications/icassp99-warp.htm.

134
L. Savioja and V. Välimäki, ``Reducing the dispersion error in the digital waveguide mesh using interpolation and frequency-warping techniques,'' IEEE Transactions on Speech and Audio Processing, pp. 184-194, March 2000.

135
L. Savioja and V. Välimäki, ``Interpolated rectangular 3-d digital waveguide mesh algorithms with frequency warping,'' IEEE Transactions on Speech and Audio Processing, vol. 11, pp. 783-790, Nov. 2003.

136
G. Scavone, ``Modeling vocal-tract influence in reed wind instruments,'' in Proceedings of the Stockholm Musical Acoustics Conference (SMAC-03), http: //www.speech.kth.se/smac03/, (Stockholm), pp. 291-294, Royal Swedish Academy of Music, Aug. 2003.

137
G. Scavone and P. R. Cook, ``Combined linear and non-linear prediction in calibrating models of musical instruments to recordings,'' in Proceedings of the 1994 International Computer Music Conference, Århus, pp. 433-434, Computer Music Association, 1994,
Send email to gary@ccrma.stanford.edu to request a copy of the full paper.

138
G. Scavone and J. O. Smith, ``Digital waveguide modeling of woodwind toneholes,'' in Proceedings of the 1997 International Computer Music Conference, Greece, Computer Music Association, 1997.

139
G. Scavone and J. O. Smith, ``Scattering parameters for the Keefe clarinet tonehole model,'' in Proceedings of the International Symposium on Musical Acoustics (ISMA-97), Edinburgh, Scotland, pp. 433-438, Aug. 1997.

140
G. P. Scavone and P. R. Cook, ``Real-time computer modeling of woodwind instruments,'' in Proceedings of the International Symposium on Musical Acoustics (ISMA-98), Leavenworth, Washington, pp. 197-202, July 1998,
http: //ccrma.stanford.edu/~jos/tonehole/.

141
G. P. Scavone and M. Karjalainen, ``Tonehole radiation directivity: A comparison of theory to measurements,'' in Proceedings of the 2002 International Computer Music Conference, Sweden, pp. 325-329, 2002.

142
G. P. Scavone, An Acoustic Analysis of Single-Reed Woodwind Instruments with an Emphasis on Design and Performance Issues and Digital Waveguide Modeling Techniques,
PhD thesis, CCRMA, Music Dept., Stanford University, March 1997,
http://ccrma.stanford.edu/~gary/.

143
C. Segoufin, B. Fabre, M. P. Verge, A. Hirschberg, and A. P. J. Wijnands, ``Experimental study of the influence of mouth geometry on sound production in a recorder-like instrument: Windway length and chamfers,'' Acta Acustica, vol. 86, pp. 649-661, 2000.

144
S. Serafin, The sound of friction: real-time models, playability and musical applications,
PhD thesis, Music Department, Stanford University, 2004.

145
S. Serafin and D. Young, ``Bowed string physical model validation through use of a bow controller and examination of bow strokes,'' in Proceedings of the Stockholm Musical Acoustics Conference (SMAC-03), http: //www.speech.kth.se/smac03/, 2003.

146
S. Serafin, P. Huang, and J. Smith, ``The banded digital waveguide mesh,'' in Workshop on Current Research Directions in Computer Music, (Audiovisual Institute, Pompeu Fabra University), Nov. 15-17, 2001.

147
S. Serafin, P. Huang, S. Ystad, C. Chafe, and J. O. Smith, ``Analysis and synthesis of unusual friction-driven musical instruments,'' in Proceedings of the 2002 International Computer Music Conference, Sweden, 2002.

148
D. B. Sharp, Acoustic Pulse Reflectometry for the Measurement of Musical Wind Instruments,
PhD thesis, Dept. of Physics and Astronomy, University of Edinburgh, 1996,
http: //acoustics.open.ac.uk/pdf/thesis.pdf.

149
J. H. Smith and J. Woodhouse, ``The tribology of rosin,'' Journal of Mechanics and Physics of Solids, vol. 48, pp. 1633-1681, Aug. 2000.

150
J. Smith and S. Serafin, ``Tutorial lecture on virtual musical instruments (abstract),'' Journal of the Acoustical Society of America, Program of the 140th Meeting, Newport Beach, CA, Dec. 3-8, vol. 108, p. 2487, Nov. 2000,
Invited Tutorial (60-page hand-out).

151
J. O. Smith, Techniques for Digital Filter Design and System Identification with Application to the Violin,
PhD thesis, Elec. Engineering Dept., Stanford University (CCRMA), June 1983,
CCRMA Technical Report STAN-M-14, http: //ccrma.stanford.edu/STANM/stanms/stanm14/.

152
J. O. Smith, ``Efficient simulation of the reed-bore and bow-string mechanisms,'' in Proceedings of the 1986 International Computer Music Conference, The Hague, pp. 275-280, Computer Music Association, 1986,
also available in [153].

153
J. O. Smith, ``Music applications of digital waveguides,'' Tech. Rep. STAN-M-39, CCRMA, Music Department, Stanford University, 1987,
CCRMA Technical Report STAN-M-39, http: //ccrma.stanford.edu/STANM/stanms/stanm39/.

154
J. O. Smith, ``Viewpoints on the history of digital synthesis,'' in Proceedings of the 1991 International Computer Music Conference, Montreal, pp. 1-10, Computer Music Association, 1991,
http: //ccrma.stanford.edu/~jos/kna/.

155
J. O. Smith, ``Waveguide simulation of non-cylindrical acoustic tubes,'' in Proceedings of the 1991 International Computer Music Conference, Montreal, pp. 304-307, Computer Music Association, 1991.

156
J. O. Smith, ``Physical modeling using digital waveguides,'' Computer Music Journal, vol. 16, pp. 74-91, Winter 1992,
special issue: Physical Modeling of Musical Instruments, Part I. http: //ccrma.stanford.edu/~jos/pmudw/.

157
J. O. Smith, ``Efficient synthesis of stringed musical instruments,'' in Proceedings of the 1993 International Computer Music Conference, Tokyo, pp. 64-71, Computer Music Association, 1993,
incorporated into [162].

158
J. O. Smith, ``Physical modeling synthesis update,'' Computer Music Journal, vol. 20, pp. 44-56, Summer 1996,
http: //ccrma.stanford.edu/~jos/pmupd/.

159
J. O. Smith, ``Principles of digital waveguide models of musical instruments,'' in Applications of Digital Signal Processing to Audio and Acoustics (M. Kahrs and K. Brandenburg, eds.), pp. 417-466, Boston/Dordrecht/London: Kluwer Academic Publishers, 1998.

160
J. O. Smith, Mathematics of the Discrete Fourier Transform (DFT),
http: //w3k.org/books/: W3K Publishing, 2003,
http: //ccrma.stanford.edu/~jos/mdft/.

161
J. O. Smith, Introduction to Digital Filters,
http: //ccrma.stanford.edu/~jos/filters/, May 2004.

162
J. O. Smith, Physical Audio Signal Processing: Digital Waveguide Modeling of Musical Instruments and Audio Effects,
http: //ccrma.stanford.edu/~jos/pasp/, December 2005.

163
J. O. Smith and J. S. Abel, ``Bark and ERB bilinear transforms,'' IEEE Transactions on Speech and Audio Processing, pp. 697-708, November 1999,
Matlab code for the main figures:http://ccrma.stanford.edu/~jos/bbt/.

164
J. O. Smith and B. Friedlander, ``Adaptive interpolated time-delay estimation,'' IEEE Transactions on Aerospace and Electronic Systems, vol. 21, pp. 180-199, March 1985.

165
J. O. Smith and G. Scavone, ``The one-filter Keefe clarinet tonehole,'' in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, (New York), IEEE Press, Oct. 1997.

166
J. O. Smith and S. A. Van Duyne, ``Commuted piano synthesis,'' in Proceedings of the 1995 International Computer Music Conference, Banff, pp. 319-326, Computer Music Association, 1995,
http: //ccrma.stanford.edu/~jos/pdf/svd95.pdf.

167
T. Stilson, ``Forward-going wave extraction in acoustic tubes,'' in Proceedings of the 1995 International Computer Music Conference, Banff, pp. 517-520, Computer Music Association, 1995.

168
G. Stoll, G. Theile, and M. Link, ``Mascam: Using psychoacoustic masking effects for low-bit-rate coding of high quality complex sounds,'' in Structure and Perception of Electroacoustic Sound and Music, pp. 2034-2048, New York: Excerpta Medica, 1989,
Royal Swedish Academy of Music publication no. 60, 1989.

169
J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations,
Pacific Grove, CA: Wadsworth and Brooks, 1989.

170
J. Sundberg, The Science of the Singing Voice,
Dekalb, Illinois: Northern Illinois University Press, 1987.

171
T. Tolonen, V. Välimäki, and M. Karjalainen, ``Evaluation of modern synthesis methods,'' Tech. Rep. 48, Laboratory of Acoustics and Audio Signal Processing, Dept. of Electrical and Communications Engineering, Helsinki University of Technology, March 1998,
downloadable from http://www.acoustics.hut.fi/~ttolonen/sound_synth_report.html.

172
T. Tolonen, V. Välimäki, and M. Karjalainen, ``Modeling of tension modulation nonlinearity in plucked strings,'' IEEE Transactions on Speech and Audio Processing, vol. SAP-8, pp. 300-310, May 2000.

173
C. Traube and J. Smith, ``Estimating the plucking point on a guitar string,'' in Proceedings of the International Conference on Digital Audio Effects (DAFx-00), Verona, Italy, Dec. 2000,
http: //www.dafx.de/.

174
M. Vail, Vintage Synthesizers,
San Francisco: Miller Freeman Books, 1993.

175
V. Välimäki, M. Laurson, and C. Erkut, ``Commuted waveguide synthesis of the clavichord,'' Computer Music Journal, vol. 27, pp. 71-82, Spring 2003.

176
V. Välimäki and M. Karjalainen, ``Digital waveguide modeling of wind instrument bores constructed of truncated cones,'' in Proceedings of the 1994 International Computer Music Conference, Århus, pp. 423-430, Computer Music Association, 1994.

177
V. Välimäki and T. Tolonen, ``Development and calibration of a guitar synthesizer,'' Journal of the Audio Engineering Society, vol. 46, no. 9, 1998,
Proceedings of the 103rd Convention of the Audio Engineering Society, New York, Sept. 1997.

178
V. Välimäki, J. Huopaniemi, M. Karjalainen, and Z. Jánosy, ``Physical modeling of plucked string instruments with application to real-time sound synthesis,'' Journal of the Audio Engineering Society, vol. 44, pp. 331-353, May 1996.

179
V. Välimäki, H. Penttinen, J. Knif, M. Laurson, and C. Erkut, ``Sound synthesis of the harpsichord using a computationally efficient physical model,'' EURASIP Journal on Applied Signal Processing, vol. 7, pp. 934-948, 2004,
special issue on Model-Based Sound Synthesis.

180
C. Vallette, ``The mechanics of vibrating strings,'' in Mechanics of Musical Instruments (A. Hirschberg, J. Kergomard, and G. Weinreich, eds.), pp. 115-183, Berlin: Springer-Verlag, 1995.

181
S. A. Van Duyne and J. O. Smith, ``Physical modeling with the 2-D digital waveguide mesh,'' in Proceedings of the 1993 International Computer Music Conference, Tokyo, pp. 40-47, Computer Music Association, 1993,
http: //ccrma.stanford.edu/~jos/pdf/mesh.pdf.

182
S. A. Van Duyne and J. O. Smith, ``Developments for the commuted piano,'' in Proceedings of the 1995 International Computer Music Conference, Banff, pp. 335-343, Computer Music Association, 1995,
http: //ccrma.stanford.edu/ jos/pdf/svd95.pdf.

183
S. A. Van Duyne and J. O. Smith, ``The tetrahedral waveguide mesh: Multiply-free computation of wave propagation in free space,'' in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, (New York), pp. 9a.6.1-4, IEEE Press, Oct. 1995.

184
S. A. Van Duyne and J. O. Smith, ``The 3D tetrahedral digital waveguide mesh with musical applications,'' in Proceedings of the 1996 International Computer Music Conference, Hong Kong, Computer Music Association, 1996.

185
M. van Walstijn, ``private communication,'' 2004.

186
M. O. Van Walstijn and D. Campbell, ``Discrete-time modelling of woodwind instrument bores using wave variables,'' Journal of the Acoustical Society of America, vol. 113, pp. 575-585, 2003.

187
M. van Walstijn and G. Scavone, ``The wave digital tonehole,'' in Proceedings of the 2000 International Computer Music Conference, Berlin, pp. 465-468, Computer Music Association, 2000,
http: //ccrma.stanford.edu/~jos/wdth/.

188
M. van Walstijn and J. O. Smith, ``Use of truncated infinite impulse response (TIIR) filters in implementing efficient digital waveguide models of flared horns and piecewise conical bores with unstable one-pole filters elements,'' in Proc. Int. Symp. Musical Acoustics (ISMA-98), Leavenworth, Washington, pp. 309-314, Acoustical Society of America, June 28 1998,
http: //ccrma.stanford.edu/~jos/tiirts/.

189
M. O. van Walstijn, Discrete-Time Modelling of Brass and Reed woodwind Instruments with Application to Musical Sound Synthesis,
PhD thesis, Department of Physics and Astronomy, University of Edinburgh, 2002,
http: //www.ph.ed.ac.uk/~maarten/.

190
M. P. Verge, Aeroacoustics of Confined Jets with Applications to the Physical Modeling of Recorder-Like Instruments,
PhD thesis, Eindhoven University, 1995.

191
C. Vergez and X. Rodet, ``Model of the trumpet functioning: Real time simulation and experiments with an artificial mouth,'' in Proceedings of the International Symposium on Musical Acoustics (ISMA-97), Edinburgh, Scotland, pp. 425-432, Aug. 1997.

192
C. Vergez and X. Rodet, ``Experiments with an artificial mouth for trumpet,'' Proceedings of the International Symposium on Musical Acoustics (ISMA-98), Leavenworth, Washington, 1998.

193
C. Vergez and X. Rodet, ``Dynamic systems and physical models of trumpet-like instruments analytical study and asymptotical properties,'' Acta Acustica, 2000.

194
C. Vergez and X. Rodet, ``New algorithm for nonlinear propagation of a sound wave application to a physical model of a trumpet,'' Journal of Signal Processing, 2000.

195
A. Wang and J. O. Smith, ``On fast FIR filters implemented as tail-canceling IIR filters,'' IEEE Transactions on Signal Processing, vol. 45, pp. 1415-1427, June 1997.

196
G. Weinreich, ``Coupled piano strings,'' Journal of the Acoustical Society of America, vol. 62, pp. 1474-1484, Dec 1977,
see also [8] and Scientific American, vol. 240, p. 94, 1979.

197
D. Wessel and M. Wright, ``Problems and prospects for intimate musical control of computers,'' in CHI-2001 Workshop on New Instruments for Musical Expression (NIME-01), Seattle, Washington, April 1 and 2 2001,
http: //www.csl.sony.co.jp/person/poup/research/chi2000wshp/program.html.

198
A. P. Wijnands and A. Hirschberg, ``Effect of a pipe neck downstream of a double reed,'' in Proceedings of the International Symposium on Musical Acoustics (ISMA-95), Dourdan, France, (France), pp. 149-152, Société Français d'Acoustique, July 1995.

199
J. Woodhouse, ``On the synthesis of guitar plucks,'' Acustica - Acta Acustica, 2004,
in press.

200
J. Woodhouse, ``Plucked guitar transients: Comparison of measurements and synthesis,'' Acustica - Acta Acustica, 2004,
in press.

201
J. Woodhouse, ``private communication,'' 2004.

202
J. Woodhouse, ``On the playability of violins. Part I: Reflection functions. Part II: Minimum bow force and transients,'' Acustica, vol. 78, pp. 125-136,137-153, 1993.

203
J. Woodhouse, ``Bowed string simulation using a thermal friction model,'' Acustica - Acta Acustica, vol. 89, pp. 355-368, 2003.

204
J. Woodhouse, R. T. Schumacher, and S. Garoff, ``Reconstruction of bowing point friction force in a bowed string,'' Journal of the Acoustical Society of America, vol. 108, pp. 357-368, 2000.

205
E. Zwicker and H. Fastl, Psychoacoustics: Facts and Models,
Berlin: Springer Verlag, 1999,
second updated edition, 80pp., CD-ROM/softcover.


Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download jnmr.pdf

``Virtual Acoustic Musical Instruments: Review and Update'', by Julius O. Smith III, DRAFT to be submitted to the Journal of New Music Research, special issue for the Stockholm Musical Acoustics Conference (SMAC-03) .
Copyright © 2005-12-28 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]