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ABSTRACT: The \commuted piano synthesis" algorithm is described, based on a simpli�ed acous-
tic model of the piano. The model includes multiple coupled strings, a nonlinear hammer, and an
arbitrarily large soundboard and enclosure. Simpli�cations are employed which greatly reduce com-
putational complexity. Most of the simpli�cations are made possible by the commutativity of linear,
time-invariant systems. Special care is given to the felt-covered hammer which is highly nonlinear
and therefore does not commute with other components. In its present form, a complete, two-key
piano can be synthesized in real time on a single 25MHz Motorola DSP56001 signal processing chip.

1 Introduction

In [11, 6], techniques were described for simulating plucked, struck, and bowed string instruments in
which the resonating body of the instrument is commuted with the string in order to eliminate the
high order digital �lter which is otherwise necessary to simulate body resonances. In this technique,
the string excitation (e.g., the \pluck" or \strike" force over time) is pre-convolved with the body
impulse response, and the resulting waveform can be stored in a wavetable. To synthesize a plucked
or struck string tone, the wavetable is simply \played into" the string. The resulting sound is that
of a plucked or struck string with all the body resonances of the natural instrument, since they are
pre-installed in the excitation. The sound quality is excellent for linearly plucked and struck strings.
For bowed strings, the quality is quite good for smooth bowing styles that do not involve too much
bow force. This paper describes an extension of this technique to the piano using a linearized model
of the piano hammer which depends on striking velocity.

2 The Piano

The piano is an example of a nonlinearly struck string. It is simple in some ways and highly
complicated in others. It is simple in that only the hammer velocity matters as a control variable
when the string is struck|the �nger that presses the key has no signi�cant mechanical connection
to the hammer after it is launched into 
ight toward the string. That means MIDI, for example,
provides a su�cient representation for piano performance, and the dimensionality of control (aside
from pedals) is con�ned to one degree of freedom per key, per time instant|the so-called \velocity"
parameter.

2.1 String

Piano strings are fairly simple because they are uniform, tightly stretched, and nearly rigidly termi-
nated. As a result, they are highly linear under normal playing conditions. The digital waveguide
approach to string modeling [10] therefore works very well for the individual piano strings. The



non-negligible sti�ness of piano strings poses an increase in the expense of the implementation, re-
sulting in the need for an allpass �lter in the \string loop". Allpass �lters of order 4� 6 or more are
required for good results [7, 14]. Another complicating factor is the non-negligible coupling between
strings that are hit by the same hammer [17]. There is also signi�cant coupling among all the strings
when the sustain pedal is down. To fully simulate the linear behavior of each string, it is necessary
to couple [11] at least three digital waveguides together corresponding to the main types of wave
propagation in and along the string (two transverse and one longitudinal). In key ranges in which
the hammer strikes three strings simultaneously, nine coupled waveguides are required per key for
a complete simulation. This paper will address the case in which only the vertical plane of vibra-
tion is simulated for each string, and only one string is implemented per key. In a reasonably high
quality implementation, at least the correct number of strings should be implemented, since they
are detuned and cause important beating and aftersound e�ects [17]. However, since extending the
present discussion to multiple strings is straightforward, only the single-string case will be treated
here.

2.2 Resonator

The soundboard and enclosure as a whole are simple in that they are largely linear, time-invariant
components, but they are complex in that they are large. Large vibrating objects generally have
many more resonant modes in the range of human hearing than do small objects. Also, waveguide
propagation in the soundboard and enclosure is not con�ned to one dimension as it is in a string.
That means a complete digital waveguide model of the piano would require two- and/or three-
dimensional waveguide meshes [13] to model the resonating soundboard and piano enclosure. In sum,
the sheer size of the piano and its soundboard lead to very expensive direct modeling techniques,
even after accounting for the fundamental e�ciency advantages of the digital waveguide approach.
However, the commuted synthesis technique described below bypasses this di�culty and allows
simple \sampling" of the soundboard/enclosure impulse response into a read-only memory which is
\played" into the string in a manner modi�ed by the hammer-string collision. The same technique
applies equally well to the huge bank of sympathetically vibrating strings obtained when the sustain
pedal is down [16].

2.3 Hammer

A more seriously complicating factor is the piano hammer. While only its velocity is necessary
to specify its state completely prior to hitting the string, the string collision is highly nonlinear
[12]. The nonlinearity comes from the felt covering the hammer: As it compresses, it acts like
a spring whose spring-constant is rapidly increasing. Also, the hammer-string interactions are a
function of both string and hammer motion, giving potentially complex cases such as the string
hitting the hammer a second time after it has already fallen away from the initial strike. Apart
from the hammer, the entire instrument can be very well approximated by a linear model. The
main di�culty with nonlinearity in this context is that it prevents use of the commuted synthesis
technique at �rst sight. This is because commutativity of system elements is only possible in general
for linear, time-invariant elements. In previous work, we could relax the time-invariance requirement
to some extent to allow for string vibrato. However, relaxing linearity is much more problematic,
especially when the nonlinearity is this severe.

3 Commuted Piano Synthesis

It turns out commuted piano synthesis is possible with both high �delity and low computational
cost in spite of the nonlinear behavior of the hammer-string interaction.

The key observation is to note that the interaction between the hammer and string consists essentially
of a few discrete events per hammer strike when the string is initially at rest. That is, the hammer-
string interaction can be approximated as one or a few discrete impulses which are �ltered using



�lters which depend on the hammer-string collision velocity. Figure 1 illustrates the qualitative
behavior of the striking force [2, 12]. In this example, the three peaks in the force curve indicate
that the hammer stays in contact with the string long enough for return pulse waves from the agra�e
to compress the felt two more times before the hammer falls away the string. Also indicated in the
�gure are where three impulses may be located in order to synthesize the waveform as a superposition
of �lter impulse responses.
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Figure 1: Example of overlapping hammer-string interaction force pulses. The vertical lines indicate the

locations and amplitudes of three single-sample impulses which may be passed through small digital �lters to

produce the overlapping pulses shown.

To a large extent, the number of interaction impulses is determined by which string is being struck.
Thus, given key number and hammer velocity, one can predict the amplitude and timing of all in-
teraction impulses, for a string initially at rest. There is a slight unpredictability which we neglect
having to do with the fact that when the hammer strikes an already vibrating string, the entire
history of string vibration in
uences the exact details of the hammer-string interaction; however,
this is a second-order e�ect which may not even be desirable. We still retain the superposition of
the new strike response with any existing vibration, thus preserving the naturally varied colorations
of successive strikes on a single string as is characteristic of a physical modeling technique. If unpre-
dictability of the force pulses on restriking is deemed important, one may use random perturbations
of the interaction impulse levels as a function of amplitude of vibration prior to the hammer strike.
For greatest precision, of course, a rigorous piano hammer model may be run in parallel to compute
the hammer-string interaction force in real time as a function of their relative velocities [1, 2, 12, 15].

The creation of a force pulse from a single impulse for a speci�c dynamic level is shown in Fig. 2.
Without loss of generality, we consider force units; dividing by the string wave impedance gives
the corresponding velocity injection for the string loop. Other physical variables may be chosen, as
discussed in [10].
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Figure 2: Creation of a single hammer-string interaction force pulse as the impulse response of a lowpass

�lter. The input to the �lter is a single nonzero sample (impulse), and the output is the desired hammer-string

force pulse. When the amplitude of the input impulse increases, the output pulse increases in amplitude and

decreases in width, which means the �lter is nonlinear. However, on each speci�c impulse, the �lter operates

as a normal linear, time-invariant �lter. In this way, the entire piano is \linearized" with respect to each

�xed hammer velocity.



3.1 Illustrative Implementation

One method of creating multiple force pulses from multiple impulses at a speci�c dynamic level is
shown in Fig. 3. The multiple interaction impulses become multiple overlapping impulse responses

which feed the summer, and the summer output is fed to the string.
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Figure 3: Creation of multiple hammer-string interaction force pulses as the superposition of impulse-

responses of a bank of digital �lters. The input to each �lter is a single impulse, and the sum of their

outputs gives the desired superposition of hammer-string force pulses. When the input impulses increase in

amplitude, the output pulses become taller and thinner, showing less overlap.

At a speci�c dynamic level, we have obtained the critical feature that the model is linear and time
invariant. That means we may now commute the soundboard/enclosure �lter with not only the
string, but with the hammer lowpass �lter as well. These operations are carried out in going from
Fig. 4, which shows a naturally ordered schematic diagram of the complete piano synthesis system,
to Fig. 5, which shows the results of commuting the hammer-string assembly with the soundboard
and enclosure.
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Figure 4: Piano synthesis as described using natural ordering of all elements.
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Figure 5: Piano synthesis using commuted ordering. The soundboard and piano enclosure are commuted

such that we only need a stored recording of the impulse response of their series combination. The large

digital �lter required to implement the soundboard and the piano enclosure is thus removed. A change in

the hammer-string collision velocity vc changes the �lters and triggers playback of the soundboard/enclosure

impulse response.

While the commuted result is valid only for a �xed hammer-string collision velocity vc, that is all we
need. For di�erent collision velocities, we simply alter the �lters, denoted LPF1 through LPF3 in



Fig. 5, applied to the soundboard/enclosure impulse response. This works because the nonlinearity
is con�ned to the hammer-string collision, and these are discrete, non-overlapping events which can
be modeled individually using linear, time-invariant elements, indexed by collision velocity. Note,
however, that if a \virtual piano key" is restruck before the excitation table has �nished playing
out, that playback must either be prematurely terminated (the low-cost solution), or multiple,
overlapping playbacks must be supported, as in commuted bowed-string synthesis [11].

3.2 Excitation Factoring

It is typically more e�cient to implement the highest Q resonances of the soundboard and piano
enclosure using actual digital �lters. By factoring these out, the impulse response is shortened
and thus the required excitation table length is reduced. This provides a classical computation
versus memory trade-o� which can be optimized as needed in a given implementation. The explicit
resonators can be conveniently implemented using parametric equalizer sections, one per high-Q
resonance. In many practical situations, parametric eq sections may already be available in a separate
e�ects unit.

A possible placement of the resonators is shown in Fig. 6. However, since all elements are linear
and time invariant, they may be ordered arbitrarily. For example they could appear before the
string. Having the resonators at the end, however, is convenient for de�ning multiple outputs having
di�erent spectral characteristics. Traditionally, resonators, equalization, dynamic comb �ltering, and
reverberation are implemented as post-processors, and these can all provide a diversity of outputs
which can be panned individually into the stereophonic (or N-channel) sound-output stream for
added sonic richness.
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Figure 6: Example block diagram of a complete, commuted-piano synthesis system, including resonators

which partially implement the response of the soundboard and enclosure, equalization sections for piano color

variations, reverberation, comb-�lter(s) for 
anging, chorus, and simulated hammer-strike echoes on the

string, and multiple outputs for enhanced multi-channel sound.

3.3 String Reverb

The sound of all strings ringing can be summed with the excitation to simulate the e�ect of many
strings resonating with the played string when the sustain pedal is down. The string loop �lters out
the unwanted frequencies in this signal and selects only the overtones which would be excited by the
played string. This is just another case of commuting the string with a resonator, where in this case,
the resonator includes a bank of sympathetically vibrating strings. Sampling synthesis techniques
can be used, for example, to synthesize the sound of all piano strings resonating at the same level.

4 String Interface

In a physical piano string, the hammer strikes the string between its two endpoints, some distance
from the agra�e and far from the bridge. This corresponds to the diagram in Fig. 7, where the delay
lines are drawn according to their physical interpretation.
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Figure 7: Illustration of string excitation in a �ltered delay loop arranged to display the physical model

interpretation. The delay lines contain samples of traveling force waves in this case, and other wave variables

yield a similar diagram. The hammer-string interaction force pulse is summed into both the left- and right-

going delay lines, corresponding to sending the same pulse toward both ends of the string from the hammer.

One direction is negated relative to the other in a force wave simulation, while both are the same sign in a

velocity wave simulation (but then the string terminations would be inverting).

By commutativity of linear, time-invariant elements, Fig. 7 can be immediately simpli�ed to the
form shown in Fig. 8, in which each delay line corresponds to the travel time in both directions on
each string segment. From a structural point of view, we have a conventional �ltered delay loop plus
a second input (inverted) which sums into the loop somewhere inside the delay line. The output is
shown coming from the middle of the larger delay line, which gives physically correct timing, but
in practice, the output can be taken from anywhere in the feedback loop. It is probably preferable
in practice to de�ne the output as the delay-line input. That way, other response latencies in the
overall system can be compensated to a maximum extent.
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Figure 8: Diagram equivalent to Fig. 7, obtained by combining upper- and lower-rail delay lines.

An alternate structure equivalent to Fig. 8 is shown in Fig. 9, in which the second input injection
is factored out into a separate comb-�ltering of the input. The comb-�lter delay equals the delay
between the two inputs in Fig. 8, and the delay in the feedback loop equals the sum of both delays
in Fig. 8. In this case, the string is modeled using a simple �ltered delay loop, and the striking force
signal is separately �ltered by a comb �lter corresponding to the striking point along the string.
This factoring adds to the amount of memory needed, but (1) simpli�es automatic loop calibration,
and (2) the comb �lter can be implemented elsewhere, such as in an e�ects unit. Post-processing
comb �lters are often used in reverberator design and in virtual pick-up simulation.

The comb-�ltering can also be conveniently implemented using a second tap from the appropriate
delay element in the �ltered delay loop simulation of the string, as depicted in Fig. 10. The new
tap output is simply summed (or di�erenced, depending on loop implementation) with the �ltered
delay loop output. Note that making the new tap a moving, interpolating tap (e.g., using linear
interpolation), a 
anging e�ect is available. Adding more moving taps and summing/di�erencing
their outputs, with optional scale factors, provides an economical chorus or leslie e�ect. These



Delay
Hammer

Strike f(t)

Filter

-

Delay

g(t)

String Output

Figure 9: Diagram equivalent to Fig. 7, obtained by replacing the second string input by a separate comb-

�lter applied to a single input. It can be quickly derived by pushing the left-most delay in Fig. 7 through the

summer on its left.

extra delay e�ects cost no extra memory since they utilize the memory that's already needed for the
string simulation. While such e�ects are not traditionally applied to piano sounds, they are applied
to electric piano sounds which can also be simulated using the same basic technique.
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Figure 10: Use of a second delay-line tap to implement comb �ltering.

It is also possible to eliminate explicit comb-�ltering corresponding to the hammer striking position.
The uniform spacing of the force pulses in the excitation signal f(t) is the same as the delay needed
for the striking-position comb �lter. As a result, the physical force-injection signal f(t) can be
replaced by the comb-�ltered version g(t) = f(t) � f(t � �), where � is the travel time from the
striking point to the agra�e and back. The comb �ltering can be applied to the excitation table
prior to the shaping �lter(s), or the shaping �lter(s) can be designed to convert the excitation table
directly into g(t) rather than f(t). In either case, the �nal excitation signal g(t) simply drives a
single �ltered delay loop.

Perhaps it should be emphasized here that for medium to high quality piano synthesis, multiple

�ltered delay loops should be employed per key rather than the single-loop case discussed here. Each
delay loop may correspond to a di�erent string hit by the same hammer, a di�erent polarization
plane on a single string, or to a longitudinal wave. Thus, in a good piano synthesizer, there should
be at least two �ltered delay loops, tuned di�erently (unequal loop delays), both excited by g(t) in
some manner (e.g., they can each received an identical copy), and the delay loop outputs should be
at least summed or else realistically coupled as described in [11].

5 Conclusions

A highly e�cient computational model for the piano derived from an acoustic model was described.
The hammer-string force interactions are modeled as discrete events which can be modeled as one
or a few successive impulse responses of low-order digital �lters. The soundboard and enclosure
�ltering is replaced by a look-up table using one or a few read-pointers per note. Further details are
given in the companion paper [16], and related techniques are discussed in [3].
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