Next  |  Prev  |  Up  |  Contents |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Point-Source Speakers

Consider a spherical secondary source (``point source'') located at $ {\ensuremath \underline{x}}={\ensuremath \underline{0}}$ as shown in Fig.15. Then the pressure amplitude along the listening line $ (x,0,z_l)^T$ for all $ x$ is given by

$\displaystyle p_l(x) = p_l(0) \frac{z_l}{\sqrt{z_l^2 + x^2}} \isdefs \frac{p_l(0)}{\sqrt{1 + \left(\frac{x}{z_l}\right)^2}} \isdefs \pi_l(\theta) = \frac{p_l(0)}{\sqrt{1 + \tan^2(\theta)}} \protect$ (9)

where $ p_l(0)$ denotes the pressure amplitude observed from the point source at $ {\ensuremath \underline{x}}=(0,0,z_l)^T$ , and $ \theta \isdeftext \tan^{-1}(x/z_l)$ denotes the angle of the line from the source center to the line-array point at $ x$ , i.e., $ {\ensuremath \underline{x}}=(x,0,z_l)^T$ . This polar-pattern slice is plotted in Fig.16 for the triangular array+listener geometry such as described in §4.10 on page [*], with $ p_l(0)\isdeftext 1$ . The top plot shows $ p_l(x)$ over a 12 m width centered about a 6 m wide array, and the bottom plot shows $ \pi_l(\theta)$ for $ \theta\in[-\pi/2,\pi/2]$ , thereby covering the entire axis containing array.

Figure 16: Point-source polar-pattern slice for a listening-line $ z_l=\lambda $ away from the source. Top: Gain $ p_l$ versus position $ x$ . Bottom: Gain $ \pi _l$ versus angle $ \theta \isdeftext \tan^{-1}(x/z_l)$ .
\resizebox{0.8\textwidth }{!}{\includegraphics{eps/pointSourcePolarPatternSlices.eps}}

In addition to the gain variation $ p_l(x)$ in Eq.(9), we also have phase effects that we don't have when keeping radius $ r$ constant and only varying $ \theta$ . The envelope $ p_l(x)$ in Fig.16 is due only to spherical spreading loss according to $ 1/r$ . The difference in propagation distance between $ p_l(0)$ and $ p_l(x)$ is

$\displaystyle r_d(x) \isdef r_l(x)-r_l(0) = r_l(x)-z_l = \sqrt{z_l^2+x^2}-z_l = z_l\left[\sqrt{1+\tan^2(\theta)}-1\right]. \protect$ (10)

The resulting frequency-response re$ \left\{p_l(x)e^{jkr_d(x)}\right\}$ is plotted in Fig.17 for 1 kHz (wavelength about a foot (1.126 ft)) and $ p_l(0)=1$ , where $ k=\omega/c=2\pi\cdot
1000\,/\,343$ is the wavenumber (spatial radian frequency), which has made its appearance for the first time in these formulas.34

Figure 17: Real part of point-source frequency-response for a listening-line one wavelength away ( $ z_l=\lambda $ ). Top: Gain $ p_l$ versus position $ x$ . Bottom: Gain $ \pi _l$ versus angle $ \theta \isdeftext \tan^{-1}(x/z_l)$ .
\resizebox{0.8\textwidth }{!}{\includegraphics{eps/pointSourceFRSlices.eps}}

For small $ \vert\theta\vert$ , we can use the approximation

$\displaystyle r_d(x) \approx \frac{1}{2}\,z_l\,\tan^2(\theta) \eqsp \frac{x^2}{2z_l}.
$


Next  |  Prev  |  Up  |  Contents |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download huygens.pdf
[Comment on this page via email]

``A Spatial Sampling Approach to Wave Field Synthesis: PBAP and Huygens Arrays'', by Julius O. Smith III, Published 2019-11-18: http://arxiv.org/abs/1911.07575.
Copyright © 2020-05-15 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA