Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Multivariable Complex Signal Power

The net complex power involved in the propagation can be defined as [40]

$\displaystyle P$ $\textstyle =$ $\displaystyle {\mbox{\boldmath$u$}}^* {\mbox{\boldmath$p$}}\, = \, ({\mbox{\bol...
...+ {\mbox{\boldmath$u$}}^-)^* ({\mbox{\boldmath$p$}}^++ {\mbox{\boldmath$p$}}^-)$  
  $\textstyle =$ $\displaystyle {{\mbox{\boldmath$u$}}^+}^{*}{\mbox{\boldmath$R$}}{\mbox{\boldmat...
...+- {{\mbox{\boldmath$u$}}^-}^{*}{\mbox{\boldmath$R$}}^*{\mbox{\boldmath$u$}}^-+$  
    $\displaystyle {{\mbox{\boldmath$u$}}^-}^{*}{\mbox{\boldmath$R$}}{\mbox{\boldmat...
...^+- {{\mbox{\boldmath$u$}}^+}^{*}{\mbox{\boldmath$R$}}^*{\mbox{\boldmath$u$}}^-$  
  $\textstyle \stackrel{\triangle}{=}$ $\displaystyle (P^+- P^-) + (P^\times - P^{\times*}) \,,$ (21)

where all quantities above are functions of $z$ as in (21). The quantity $P^+= {{\mbox{\boldmath$u$}}^+}^{*}{\mbox{\boldmath$R$}}{\mbox{\boldmath$u$}}^+$ is called right-going active power (or right-going average dissipated power[*]), while $P^-= {{\mbox{\boldmath$u$}}^-}^{*}{\mbox{\boldmath$R$}}^* {\mbox{\boldmath$u$}}^-$ is called the left-going active power. The term $P^+- P^-$, the right-going minus the left-going power components, we call the net active power, while the term $P^\times - P^{\times*}$ is net reactive power. These names all stem from the case in which the matrix ${\mbox{\boldmath$R$}}(z)$ is positive definite for $\vert z\vert \geq 1$. In this case, both the components of the active power are real and positive, the active power itself is real, while the reactive power is purely imaginary.


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download gdwn.pdf

``Generalized Digital Waveguide Networks'', by Julius O. Smith III and Davide Rocchesso, preprint submitted for publication, Summer 2001.
Copyright © 2008-03-12 by Julius O. Smith III and Davide Rocchesso
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [About the Automatic Links]