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Generalized Digital Waveguide Networks
Davide Rocchesso, Julius O. Smith III

Abstract— Digital waveguides are generalized to the

multivariable case with the goal of maximizing gen-

erality while retaining robust numerical properties

and simplicity of realization. Multivariable complex

power is defined, and conditions for “medium pas-

sivity” are presented. Multivariable complex wave

impedances, such as those deriving from multivari-

able lossy waveguides, are used to construct scattering

junctions which yield frequency dependent scattering

coefficients which can be implemented in practice us-

ing digital filters. The general form for the scattering

matrix at a junction of multivariable waveguides is

derived. An efficient class of loss-modeling filters is

derived, including a rule for checking validity of the

small-loss assumption. An example application in mu-

sical acoustics is given.

I. Introduction

Digital Waveguide Networks (DWN) have been
widely used to develop efficient discrete-time physi-
cal models for sound synthesis, particularly for wood-
wind, string, and brass musical instruments [1], [2],
[3], [4], [5], [6], [7]. They were initially developed for
artificial reverberation [8], [9], [10], and more recently
they have been applied to robust numerical simula-
tion of 2D and 3D vibrating systems [11], [12], [13],
[14], [15], [16], [17].

A digital waveguide may be thought of as a sam-
pled transmission line—or acoustic waveguide—in
which sampled, unidirectional traveling waves are ex-
plicitly simulated. Simulating traveling-wave compo-
nents in place of physical variables such as pressure
and velocity can lead to significant computational
reductions, particularly in sound synthesis applica-
tions, since the models for most traditional musical
instruments (in the string, wind, and brass families),
can be efficiently simulated using one or two long de-
lay lines together with sparsely distributed scattering
junctions and filters [2], [18], [19]. Moreover, desir-
able numerical properties are more easily ensured in
this framework, such as stability [20], “passivity” of
round-off errors, and minimized sensitivity to coeffi-
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cient quantization [21], [22], [23], [14].

In [24], a multivariable formulation of digital wave-
guides was proposed in which the real, positive, char-
acteristic impedance of the waveguide medium (be
it an electric transmission line or an acoustic tube)
is generalized to any q × q para-Hermitian matrix.
The associated wave variables were generalized to a
q×m matrix of z transforms. From fundamental con-
straints assumed at a junction of two or more wave-
guides (pressure continuity, conservation of flow), as-
sociated multivariable scattering relations were de-
rived, and various properties were noted.

In this paper, partially based on [25], we pursue a
different path to vectorized DWNs, starting with a
multivariable generalization of the well known tele-

grapher’s equations [26]. This formulation provides a
more detailed physical interpretation of generalized
quantities, and new potential applications are indi-
cated.

The paper is organized as follows. Section II in-
troduces the generalized DWN formulation, starting
with the scalar case and proceeding to the multi-
variable case. The generalized wave impedance and
complex signal power appropriate to this formulation
are derived, and conditions for “passive” computa-
tion are given. In Section III, losses are introduced,
and some example applications are considered. Fi-
nally, Section IV presents a derivation of the general
form of the physical scattering junctions induced in-
tersecting multivariable digital waveguides.

II. Multivariable DWN Formulation

This section reviews the DWN paradigm and
briefly outlines considerations arising in acoustic sim-
ulation applications. The multivariable formulation
is based on m-dimensional vectors of “pressure” and
“velocity” p and u, respectively. These variables can
be associated with physical quantities such as acous-
tic pressure and velocity, respectively, or they can be
anything analogous such as electrical voltage and cur-
rent, or mechanical force and velocity. We call these
dual variables Kirchhoff variables to distinguish them
from wave variables [22] which are their traveling-
wave components. In other words, in a 1D waveguide,
two components traveling in opposite directions must



be summed to produce a physical variable. For con-
creteness, we will focus on generalized pressure and
velocity waves in a lossless, linear, acoustic tube. In
acoustic tubes, velocity waves are in units of volume
velocity (particle velocity times cross-sectional area
of the tube) [27].

A. The Ideal Waveguide

First we address the scalar case. For an ideal
acoustic tube, we have the following wave equa-

tion [27]:
∂2p(x, t)

∂t2
= c2 ∂2p(x, t)

∂x2
, (1)

where p(x, t) denotes (scalar) pressure in the tube at
the point x along the tube at time t in seconds. If the
length of the tube is LR, then x is taken to lie between
0 and LR. We adopt the convention that x increases
“to the right” so that waves traveling in the direction
of increasing x are referred to as “right-going.” The
constant c is the speed of sound propagation in the
tube, given by c =

√

K/µ, where K is the “tension1”
of the gas in the tube, and µ is the mass per unit vol-
ume of the tube. The dual variable, volume velocity
u, also obeys (1) with p replaced by u. The wave
equation (1) also holds for an ideal string, if p rep-
resents the transverse displacement, K is the tension
of the string, and µ is its linear mass density.

The wave equation (1) follows from the more phys-
ically meaningful equations [28, p. 243]:

−
∂p(x, t)

∂x
= µ

∂u(x, t)

∂t
(2)

−
∂u(x, t)

∂x
= K−1 ∂p(x, t)

∂t
. (3)

Equation (2) follows immediately from Newton’s sec-
ond law of motion, while (3) follows from conserva-
tion of mass and properties of an ideal gas.

The general traveling-wave solution to (1), or (2)
and (3), was given by D’Alembert as [27]

p(x, t) = p+(x− ct) + p−(x + ct)
u(x, t) = u+(x− ct) + u−(x + ct) ,

(4)

where p+, p−, u+, u− are the right- and left-going
wave components of pressure and velocity, respect-
ively, and are referred to as wave variables. This
solution form is interpreted as the sum of two fixed

1“Tension” is defined here for gases as the reciprocal of the
adiabatic compressibility of the gas [28, p. 230]. This definition
helps to unify the scattering formalism for acoustic tubes with
that of mechanical systems such as vibrating strings.

wave-shapes traveling in opposite directions along the
tube. The specific waveshapes are determined by the
initial pressure p(x, 0) and velocity u(x, 0) through-
out the tube x ∈ [0, LR].

B. Multivariable Formulation of the Waveguide

Perhaps the most straightforward multivariable
generalization of (2) and (3) is

∂p(x, t)

∂x
= −M

∂u(x, t)

∂t
(5)

∂p(x, t)

∂t
= −K

∂u(x, t)

∂x
(6)

in the spatial coordinates xT △
= [x1 · · · xm] at time

t, where M and K are m×m non-singular matrices
playing the respective roles of multidimensional mass
and tension. Differentiating (5) with respect to x

and (6) with respect to t, and eliminating the term
∂2u(x, t)/∂x∂t yields the m-variable generalization
of the wave equation

∂2p(x, t)

∂t2
= KM−1 ∂2p(x, t)

∂x2
. (7)

The second spatial derivative is defined here as

[

∂2p(x, t)

∂x2

]T
△
=

[

∂2p1(x, t)

∂x2
1

. . .
∂2pm(x, t)

∂x2
m

]

.

(8)
Similarly, differentiating (5) with respect to t and

(6) with respect to x, and eliminating ∂2p(x, t)/∂x∂t
yields

∂2u(x, t)

∂t2
= M−1K

∂2u(x, t)

∂x2
. (9)

For digital waveguide modeling, we desire solu-
tions of the multivariable wave equation involving
only sums of traveling waves. Consider the eigen-
function

p(x, t) =





est+v1x1

. . .
est+vmxm





△
= estI+V X · 1 , (10)

where s is interpreted as a Laplace-transform vari-
able s = σ + jω, I is the m × m identity matrix,

X
△
=diag(x), V

△
=diag([v1, . . . , vm]) is a diagonal ma-

trix of spatial Laplace-transform variables (the imag-
inary part of vi being spatial frequency along the

ith spatial coordinate), and 1T △
=[1, . . . , 1] is the m-

dimensional vector of ones. Applying the eigenfunc-
tion (10) to (7) gives the algebraic equation

s2I = KM−1V 2 △
= Cp

2V 2 , (11)
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where Cp is the diagonal matrix of sound-speeds
along the m coordinate axes. Since Cp

2V 2 = s2I,
we have

V = ±sCp

−1 . (12)

Substituting (12) into (10), the eigensolutions of (7)
are found to be of the form

p(x, t) = e
s
(

tI±Cp

−1X
)

· 1 . (13)

Similarly, applying (10) to (9) yields

V = ±sCu

−1 , (14)

where Cu

△
= M−1K. The eigensolutions of (9) are

then of the form

u(x, t) = e
s
(

tI±Cu

−1X
)

· 1 . (15)

The generalized sound-speed matrices Cp and Cu are
the same whenever M−1 and K commute, e.g., when
they are both diagonal.

Having established that (13) is a solution of (7)
when condition (11) holds on the matrices M and K,
we can express the general traveling-wave solution to
(7) in both pressure and velocity as

p(x, t) = p+ + p−

u(x, t) = u+ + u− ,
(16)

where p+△
=f(tI −Cp

−1X), and f is an arbitrary su-
perposition of right-going components of the form

(13) (i.e., taking the minus sign), and p−△
=g(tI +

Cp

−1X) is similarly any linear combination of left-
going eigensolutions from (13) (all having the plus
sign). Similar definitions apply for u+ and u−.
When the time and space arguments are dropped as
in the right-hand side of (16), it is understood that
all the quantities are written for the same time t and
position x.

When the mass and tension matrices M and K

are diagonal, our analysis corresponds to considering
m separate waveguides as a whole. For example, the
two transversal planes of vibration in a string can
be described by (7) with m = 2. In a musical in-
strument such as the piano [29], the coupling among
the strings and between different vibration modali-
ties within a single string, occurs primarily at the
bridge [30]. Indeed, the bridge acts like a junction of
several multivariable waveguides (see section IV).

When the matrices M and K are non-diagonal,
the physical interpretation can be of the form

Cp

2 △
= KM−1 , (17)

where K is the stiffness matrix, and M is the mass

density matrix. Cp is diagonal if (11) holds, and
in this case, the wave equation (7) is decoupled in
the spatial dimensions. There are physical examples
where the matrices M and K are not diagonal, even
though (17) is satisfied with a diagonal Cp. One
such example, in the domain of electrical variables, is
given by m conductors in a sheath or above a ground
plane, where the sheath or the ground plane acts as
a coupling element [31, pp. 67–68]. In acoustics, it
is more common to have coupling introduced by a
dissipative term in equation (7), but the solution can
still be expressed as decoupled attenuating traveling
waves. An example of such acoustical systems will
be presented in Section III-B.

Besides the existence of physical systems that sup-
port multivariable traveling wave solutions, there are
other practical reasons for considering a multivari-
able formulation of wave propagation. For instance,
modal analysis considers the vector p (whose dimen-
sion is infinite in general) of coefficients of the normal
mode expansion of the system response. For spaces
in perfectly reflecting enclosures, p can be compacted
so that each element accounts for all the modes shar-
ing the same spatial dimension [32]. p admits a wave
decomposition as in (16), and Cp is diagonal. Having
walls with finite impedance, there is a damping term
proportional to ∂p/∂t that functions as a coupling
term among the ideal modes [33]. Coupling among
the modes can also be exerted by diffusive properties
of the enclosure [32], [9].

Note that the multivariable wave equation (7) con-
sidered here does not include wave equations govern-
ing propagation in multidimensional media (such as
membranes, spaces, and solids). In higher dimen-
sions, the solution in the ideal linear lossless case is
a superposition of waves traveling in all directions

in the m-dimensional space [27]. However, it turns
out that a good simulation of wave propagation in
a multidimensional medium may in fact be obtained
by forming a mesh of unidirectional waveguides as
considered here, each described by (7); such a mesh
of 1D waveguides can be shown to solve numerically
a discretized wave equation for multidimensional me-
dia [34], [35], [13], [14].
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C. Multivariable Wave Impedance

From (5), we have, using (13),

∂p(x, t)/∂x = −M∂u(x, t)/∂t
⇒ ±sCp

−1p = −sMu

⇒ p = ±CpMu

= ±K1/2M1/2u
△
= ±Ru ,

(18)

where ‘+’ is for right-going and ‘−’ is for left-going.
Thus, following the classical definition for the scalar
case, the m×m wave impedance is defined by

R
△
= K1/2M1/2 = CpM = KCu , (19)

and we have

p+ = Ru+

p− = − Ru− .
(20)

Thus, the wave impedance R is the factor of propor-
tionality between pressure and velocity in a traveling
wave. In the cases governed by the ideal wave equa-
tion (7), R is diagonal if and only if the mass matrix
M is diagonal (since Cp is assumed diagonal). The
minus sign for the left-going wave p− accounts for the
fact that velocities must move to the left to generate
pressure to the left. The wave admittance is defined
as Γ = R−1.

A linear propagation medium in the discrete-time
case is completely determined by its wave impedance

R(z,x) which, in a generalized formulation, is fre-
quency dependent and spatially varying. Examples
of such general cases will be given in the sections
that follow. A waveguide is defined for purposes of
this paper as a length of medium in which the wave
impedance is either constant with respect to spatial
position x, or else it varies smoothly with x in such
a way that there is no scattering (as in the coni-
cal acoustic tube2). For simplicity, we will suppress
the possible spatial dependence and write only R(z),
which is intended to be an m × m function of the
complex variable z, analytic for |z| > 1.

2There appear to be no tube shapes supporting exact travel-
ing waves other than cylindrical and conical (or conical wedge,
which is a hybrid) [36]. However, the “Salmon horn family”
(see, e.g., [27], [37]) characterizes a larger class of approximate
one-parameter traveling waves. In the cone, the wave equation
is solved for pressure p(x, t) using a change of variables p′ = px,
where x is the distance from the apex of the cone, causing the
wave equation for the cone pressure to reduce to the cylindri-
cal case [38]. Note that while pressure waves behave simply
as non-dispersive traveling waves in cones, the corresponding
velocity waves are dispersive [38].

The generalized version of (20) is

p+ = R(z)u+

p− = − R∗(1/z∗)u− (21)

where R∗(1/z∗) is the paraconjugate of R(z), i.e., the
unique analytic continuation (when it exists) from
the unit circle to the complex plane of the conjugate
transposed of R(z) [39].

D. Multivariable Complex Signal Power

The net complex power involved in the propagation
can be defined as [40]

P = u∗p = (u+ + u−)∗(p+ + p−)

= u+∗
Ru+ − u−∗

R∗u− +

u−∗
Ru+ − u+∗

R∗u−

△
= (P+ − P−) + (P× − P×∗) , (22)

where all quantities above are functions of z as
in (21). The quantity P+ = u+∗

Ru+ is called right-

going active power (or right-going average dissipated
power3), while P− = u−∗

R∗u− is called the left-

going active power. The term P+ − P−, the right-
going minus the left-going power components, we call
the net active power, while the term P×−P×∗ is net

reactive power. These names all stem from the case in
which the matrix R(z) is positive definite for |z| ≥ 1.
In this case, both the components of the active power
are real and positive, the active power itself is real,
while the reactive power is purely imaginary.

E. Medium Passivity

Following the classical definition of passivity [40],
[41], a medium is said to be passive if

Re{P+ + P−} ≥ 0 (23)

for |z| ≥ 1. Thus, a sufficient condition for ensuring
passivity in a medium is that each traveling active-
power component is real and non-negative.

To derive a definition of passivity in terms of the
wave impedance, consider a perfectly reflecting inter-
ruption in the transmission line, such that u− = u+.

3Note that |z| = 1 corresponds to the average physical power
at frequency ω, where z = exp(jωT ), and the wave variable
magnitudes on the unit circle may be interpreted as RMS lev-
els. For |z| > 1, we may interpret the power u

∗(1/z∗)p(z) as
the steady state power obtained when exponential damping is
introduced into the waveguide giving decay time-constant τ ,
where z = exp(−T/τ) exp(jωT ) (for the continuous-time case,
see [40, p. 48]).
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For a passive medium, using (22), the inequality (23)
becomes

R(z) + R∗(1/z∗) ≥ 0 (24)

for |z| ≥ 1. I.e., the sum of the wave impedance and
its paraconjugate is positive semidefinite.

The wave impedance R(z) is an m-by-m function
of the complex variable z. Condition (24) is essen-
tially the same thing as saying R(z) is positive real4

[42], except that it is allowed to be complex, even for
real z.

The matrix R∗(1/z∗) is the paraconjugate of R.

Since R∗(1/z∗) generalizes R(ejω)
T
, to the entire

complex plane, we may interpret [R(z)+R∗(1/z∗)]/2
as generalizing the Hermitian part of R(z) to the z-
plane, viz., the para-Hermitian part.

Since the inverse of a positive-real function is pos-
itive real, the corresponding generalized wave admit-
tance Γ(z) = R−1(z) is positive real (and hence an-
alytic) in |z| ≥ 1.

We say that wave propagation in the medium is
lossless if the impedance matrix is such that

R(z) = R∗(1/z∗) (25)

i.e., if R(z) is para-Hermitian (which implies its in-
verse Γ(z) is also).

Most applications in waveguide modeling are con-
cerned with nearly lossless propagation in passive me-
dia. In this paper, we will state results for R(z) in
the more general case when applicable, while con-
sidering applications only for constant and diagonal
impedance matrices R. As shown in Section II-C,
coupling in the wave equation (7) implies a non-
diagonal impedance matrix, since there is usually a
proportionality between the speed of propagation Cp

and the impedance R through the non-diagonal ma-
trix M (see eq. 19).

F. Multivariable Digital Waveguides

The wave components of equations (16) travel
undisturbed along each axis. This propagation is im-
plemented digitally using m bidirectional delay lines,
as depicted in Fig. 1. We call such a collection of
delay lines an m-variable waveguide section. Wave-
guide sections are then joined at their endpoints via
scattering junctions (discussed in section IV) to form
a DWN.

4A complex-valued function of a complex variable f(z) is
said to be positive real if
1) z real ⇒ f(z) real
2) |z| ≥ 1 ⇒ Re{f(z)} ≥ 0
Positive real functions characterize passive impedances in clas-
sical network theory.

p (t)
+

z
-mL 

z
-m

L 

p (t + m T)
-

+
p (t - m T)

L s

L s

p (t)
-

p (t)
+

z
-mL 

z
-m

L 

p (t + m T)
-

+
p (t - m T)

L s

L s

p (t)
-

1 1

11

m

m

m

m

Fig. 1

An m-variable waveguide section.

III. Lossy Waveguides

A. Multivariable Formulation

The m-variable lossy wave equation is

∂2p(x, t)

∂t2
+KM−1ΦK−1 ∂p(x, t)

∂t
= KM−1 ∂2p(x, t)

∂x2
,

(26)
where Φ is a m×m matrix that represents a viscous
resistance. If we plug the eigensolution (10) into (26),
we get, in the Laplace domain

s2I + sKM−1ΦK−1 = KM−1V 2 △
= Cp

2V 2 (27)

or, by letting

ΦK−1 △
= Υ , (28)

we get
s2I + sCp

2Υ = Cp

2V 2 . (29)

By restricting the Laplace analysis to the imaginary
(frequency) axis s = jωs, decomposing the (diagonal)
spatial frequency matrix into its real and imaginary
parts V = V R + jV I , and equating the real and
imaginary parts of equation (29), we get the equa-
tions

V R
2 − V I

2 = −Cp

−2ωs (30)

2V RV I = ωsΥ . (31)

The term V R can be interpreted as attenuation per
unit length, while V I keeps the role of spatial fre-
quency, so that the traveling wave solution is

p = eV RXej(ωstI−V IX) · 1 . (32)

Defining Θ as the ratio5 between the real and imag-
inary parts of V (ΘV I = V R), the equations (30)

5Indeed, in the general case Θ is a diagonal matrix.
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and (31) become

V 2
I =

(

I −Θ2
)−1

ωs
2Cp

−2 (33)

Υ = 2Θ
(

I −Θ2
)−1

ωsCp

−2 . (34)

Following steps analogous to those of eq. (18), the
m×m admittance matrix turns out to be

Γ = M−1
(

I −Θ2
)−1/2

Cp

−1 −
1

s
M−1V R , (35)

which, for Φ→ 0, collapses to the reciprocal of (19).
For the discrete-time case, we may map Γ(s,x) from
the s plane to the z plane via the bilinear transfor-
mation [43], or we may sample the inverse Laplace
transform of Γ(s,x) and take its z transform to ob-

tain Γ̂(z,x).

B. Example in Acoustics

There are examples of acoustics systems, made of
two or more tightly coupled media, whose wave prop-
agation can be simulated by a multivariable wave-
guide section. One such system is an elastic, porous
solid [28, pp. 609–611], where the coupling between
gas and solid is given by the frictional force arising
when the velocities in the two media are not equal.
The wave equation for this acoustic system is (26),
where the matrix Φ takes form

Φ =

[

Φ −Φ
−Φ Φ

]

, (36)

and Φ is a flow resistance. The stiffness and the mass
matrices are diagonal and can be written as

K =

[

ka 0
0 kb

]

; (37)

M =

[

µa 0
0 µb

]

. (38)

Let us try to enforce a traveling wave solution with
spatial and temporal frequencies V and ωs, respect-
ively:

p = p0e
j(V x−ωst) =

[

pa

ps

]

, (39)

where pa and ps are the pressure wave components
in the gas and in the solid, respectively. We easily
obtain from (26) the two relations

jωsΦks
−1ps = (ωs

2αa
2 − V 2)pa (40)

jωsΦka
−1pa = (ωs

2αs
2 − V 2)ps , (41)

where

αa
2 = ca

−2 + j
ksΦ

ω
(42)

αs
2 = cs

−2 + j
kaΦ

ω
(43)

and ca and cs are the sound speeds in the gas and in
the solid, respectively. By multiplying together both
members of (40) and (41) we get

V 2 = 1
2ωs

2(αa
2 + αs

2)±
1
2

√

ωs
4(αa

2 − αs
2)2 − 4ωs

2Φ2kakb.
(44)

Equation (44) gives us a couple of complex numbers
for v, i.e., two attenuating traveling waves forming
a vector p as in (32). It can be shown [28, p. 611]
that, in the case of small flow resistance, the faster
wave propagates at a speed slightly slower than cs,
and the slower wave propagates at a speed slightly
faster than ca. It is also possible to show that the
admitance matrix (35) is non-diagonal and frequency
dependent.

This example is illustrative of cases in which the
matrices K and M are diagonal, and the coupling
among different media is exerted via the resistance
matrix Φ. If Φ approaches zero, we are back to the
case of decoupled waveguides. In any case, two pairs
of delay lines are adequate to model this kind of sys-
tem.

C. Lossy Digital Waveguides

Let us now approach the simulation of propaga-
tion in lossy media which are represented by equa-
tion (26). We treat the one-dimensional scalar case
here in order to focus on the kinds of filters that
should be designed to embed losses in digital wave-
guide networks [44], [25].

As usual, by inserting the exponential eigensolu-
tion into the wave equation, we get the one-variable
version of (29)

s2

c2
+ sΥ = V 2 (45)

where V is the wave number, or spatial frequency,
and it represents the wave length and attenuation in
the direction of propagation.

Reconsidering the treatment of section III-A and
reducing it to the scalar case, let us derive from (33)
and (34) the expression for Θ

Θ =
1

2
Υωs|VI |

−2 , (46)
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which gives the unique solution for (33)

Θ = −
ωs

Υc2
+

√

ωs
2

Υ2c4
+ 1 . (47)

This shows us that the exponential attenuation
in (32) is frequency dependent, and we can even plot
the real and imaginary parts of the wave number V
as functions of frequency, as reported in Fig. 2.
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Fig. 2

Imaginary and real part of the wave number as

functions of frequency (Υ = 0.001)

If the frequency range of interest is above a certain
threshold, i.e., Υc2/ωs is small, we can obtain the
following relations from (47), by means of a Taylor
expansion truncated at the first term:

{

|vI | ≃
ωs

c

|vR| ≃
1
2Υc .

(48)

Namely, for sufficiently high frequencies, the attenu-
ation can be considered to be constant and the dis-
persion relation can be considered to be the same as
in a non-dissipative medium, as it can be seen from
Fig. 2.

Still under the assumption of small losses, and
truncating the Taylor expansion of Θ to the first
term, we find that the wave admittance (35) reduces
to the two “directional admittances”:

Γ+ △
= Γ(s) = u+

p+ = G0

(

1 + 1
sL

)

Γ− △
= −Γ∗(−s∗) = u−

p−
= G0

(

−1 + 1
sL

)

,
(49)

where G0 = 1
µc is the admittance of the medium

without losses, and L = − 2
Υc2 is a negative shunt

reactance that accounts for losses.

The actual wave admittance of a one-dimensional
medium, such as a tube, is Γ(s) while Γ∗(−s∗) is its
paraconjugate in the analog domain. Moving to the
discrete-time domain by means of a bilinear transfor-
mation, it is easy to verify that we get a couple of “di-
rectional admittances” that are related through (21).

In the case of the dissipative tube, as we ex-
pect, wave propagation is not lossless, since R(s) 6=
R∗(−s∗). However, the medium is passive in the
sense of section II-E, since the sum R(s) + R∗(−s∗)
is positive semidefinite along the imaginary axis.

The relations here reported hold for any one-
dimensional resonator with frictional losses. There-
fore, they hold for a certain class of dissipative strings
and tubes. Remarkably similar wave admittances are
also found for spherical waves propagating in conical
tubes (see Appendix A).

The simulation of a length-LR section of lossy res-
onator can proceed according to two stages of ap-
proximation. If the losses are small (i.e., Υ ≈ 0)
the approximation (48) can be considered valid in all
the frequency range of interest. In such case, we can
lump all the losses of the section in a single coeffi-
cient gL = e

1
2
ΥcLR . The resonator can be simulated

by the structure of Fig. 3, where we have assumed
that the length LR is equal to an integer number mL

of spatial samples.

p (t)
+

p (t)
+

p (t)
-

g
L

z
-m

z
-m

z

z

p(t,0) p(t,L  )

g
L

L

L

R

Fig. 3

Length-LR one-variable waveguide section with small

losses

At a further level of approximation, if the values of
Υ are even smaller we can consider the reactive com-
ponent of the admittance to be zero, thus assuming
Γ+ = Γ− = G0.

On the other hand, if losses are significant, we have
to represent wave propagation in the two directions
with a filter whose frequency response can be deduced
from Fig. 2. In practice, we have to insert a filter GL

having magnitude and phase delay that are repre-
sented in Fig. 4 for different values of Υ. From such
filter we can subtract a contribution of linear phase,
which can be implemented by means of a pure delay.
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Magnitude and phase delay introduced by frictional

losses in a waveguide section of length LR = 1, for

different values of Υ

C.1 An Efficient Class of Loss Filters

A first-order IIR filter that, when cascaded with
a delay line, simulates wave propagation in a lossy
resonator of length LR, can take the form

GL(z) =

(

α
1− r

1− rz−1
+ (1− α)

)

z−LRFs/c

△
= HL(z)z−LRFs/c . (50)

At the Nyquist frequency, and for r ≃ 1, such fil-
ter gains GL(ejπ) ≃ 1 − α and we have to use

α = 1 − e−
1
2
ΥcLR to have the correct attenuation

at high frequency. Fig. 5 shows the magnitude and
phase delay (in seconds) obtained with the first-order
filter GL for three values of its parameter r.

By comparison of the curves of Fig. 4 with the re-
sponses of Fig. 5, we see how the latter can be used
to represent the losses in a section of one-dimensional
waveguide section. Therefore, the simulation scheme
turns out to be that of Fig. 6. Of course, better ap-
proximations of the curves of Fig. 4 can be obtained
by increasing the filter order or, at least, by control-
ling the zero position of a first-order filter. How-
ever, the form (50) is particularly attractive because
its low-frequency behavior is controlled by the single
parameter r.

As far as the wave impedance is concerned, in the
discrete-time domain, it can be represented by a dig-
ital filter obtained from (49) by bilinear transforma-
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ΥcLR with the same values of Υ used for the

curves in fig. 4
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tion, which leads to

R+ =
2LFs

G0

1− z−1

2LFs + 1− (2LFs − 1)z−1
, (51)

that is a first-order high-pass filter. The discretiza-
tion by impulse invariance can not be applied in this
case because the impedance has a high-frequency re-
sponse that would alias heavily.

C.2 Validity of Small-Loss Approximation

One might ask how accurate are the small-loss ap-
proximations leading to (48). We can give a quanti-
tative answer by considering the knee of the curve in
Fig. 4, and saying that we are in the small-losses case
if the knee is lower than the lowest modal frequency
of the resonator. Given a certain value of friction
Υ, we can find the best approximating IIR filter and
then find its knee frequency ωk, corresponding to a
magnitude that is 1 + d times the asymptotic value,

8



with d a small positive number. If such frequency ωk
is smaller than the lowest modal frequency we can
take the small-losses assumption as valid and use the
scheme of fig 3.

C.3 Frequency-Dependent Friction

With a further generalization, we can consider
losses that are dependent on frequency, so that the
friction coefficient Υ is replaced by Υ(ωs). In such
case, all the formulas up to (49) will be recomputed
with this new Υ(ωs).

Quite often, losses are deduced from experimental
data which give the value VR(ωs). In these cases, it
is useful to calculate the value of Υ(ωs) so that the
wave admittance can be computed. From (33) we
find

Θ =
|VR|

√

ω2
s

c2 + VR
2

(52)

and, therefore, from (46) we get

Υ(ωs) =
2|VR(ωs)|

ωs

√

ω2
s

c2
+ VR(ωs)

2
. (53)

For instance, in a radius-a cylindrical tube, the
visco-thermal losses can be approximated by the for-
mula [45]

|VR(ωs)| =
3.0× 10−5

a

√

ωs

2π
, (54)

which can be directly replaced into (53).
In vibrating strings, the viscous friction with air

determines a damping that can be represented by the
formula [45]

|VR(ωs)| = a1

√

ωs

2π
+ a2 , (55)

where a1 and a2 are coefficients that depend on radius
and density of the string.

IV. Multivariable Waveguide Junctions

A set of N waveguides can be joined together at
one of their endpoints to create an N -port waveguide

junction. General conditions for lossless scattering in
the scalar case appeared in [9]. Waveguide junctions
are isomorphic to adaptors as used in wave digital
filters [22].

This section focuses on physically realizable scat-
tering junctions produced by connecting multivari-
able waveguides having potentially complex wave

impedances. A physical junction can be realized as a
parallel connection of waveguides (as in the connec-
tion of N tubes that share the same value of pressure
at one point), or as a series connection (as in the
connection of N strings that share the same value of
velocity at one point). The two kinds of junctions are
duals of each other, and the resulting matrices share
the same structure, exchanging impedance and ad-
mittance. Therefore, we only treat the parallel junc-
tion.

A. Parallel Junction of Multivariable Complex

Waveguides

We now consider the scattering matrix for the par-
allel junction of N m-variable physical waveguides,
and at the same time, we treat the generalized case
of matrix transfer-function wave impedances. Equa-
tions (21) and (16) can be rewritten for each m-
variable branch as

u+
i = Γi(z)p+

i

u−

i = −Γ∗

i (1/z∗)p−

i ,
(56)

and
ui = u+

i + u−

i

pi = p+
i + p−

i = pJ1 ,
(57)

where Γi(z) = R−1
i (z), pJ is the pressure at the junc-

tion, and we have used pressure continuity to equate
pi to pJ for any i.

Using conservation of velocity we obtain

0 = 1T
N
∑

i=1

ui

= 1T
N
∑

i=1

{

[Γi(z) + Γ∗

i (1/z∗)] p+
i

−Γ∗

i (1/z∗)pJ1} (58)

and

pJ = S1T
N
∑

i=1

[Γi(z) + Γ∗

i (1/z∗)] p+
i , (59)

where

S =

{

1T

[

N
∑

i=1

Γ∗

i (1/z∗)

]

1

}−1

. (60)

From (57), we have the scattering relation

p− =







p−

1
...
p−

N






= Ap+
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= A







p+
1

...
p+

N






= pJ







1
...
1






− p+ , (61)

where the scattering matrix is deduced from (59):

A = S





1T
[

Γ1 + Γ∗

1 . . . ΓN + Γ∗

N

]

. . .
1T
[

Γ1 + Γ∗

1 . . . ΓN + Γ∗

N

]



− I .

(62)
If the branches do not all have the same dimen-

sionality m, we may still use the expression (62) by
letting m be the largest dimensionality and embed-
ding each branch in an m-variable propagation space.

B. Loaded Junctions

In discrete-time modeling of acoustic systems, it is
often useful to attach waveguide junctions to exter-
nal dynamic systems which act as a load. We speak
in this case of a loaded junction [24]. The load is
expressed in general by its complex admittance and
can be considered a lumped circuit attached to the
distributed waveguide network.

To derive the scattering matrix for the loaded par-
allel junction of N lossless acoustic tubes, the Kirch-
hoff’s node equation is reformulated so that the sum
of velocities meeting at the junction equals the exit
velocity (instead of zero). For the series junction of
transversely vibrating strings, the sum of forces ex-
erted by the strings on the junction is set equal to
the force acting on the load (instead of zero).

The load admittance ΓL is regarded as a lumped

driving-point admittance [42], and the equation

UL(z) = ΓL(z)pJ(z) (63)

expresses the relation at the load.
For the general case of N m-variable physical wave-

guides, the expression of the scattering matrix is that
of (62), with

S =

[

1T

(

N
∑

i=1

Γi

)

1 + ΓL

]−1

. (64)

C. Example in Acoustics

As an application of the theory developed herein,
we outline the digital simulation of two pairs of pi-
ano strings. The strings are attached to a common
bridge, which acts as a coupling element between
them (see Fig. 7). An in-depth treatment of coupled
strings can be found in [30].

To a first approximation, the bridge can be mod-
eled as a lumped mass-spring-damper system, while
for the strings, a distributed representation as wave-
guides is more appropriate. For the purpose of illus-
trating the theory in its general form, we represent
each pair of strings as a single 2-variable waveguide.
This approach is justified if we associate the pair with
the same key in such a way that both the strings are
subject to the same excitation. Actually, the 2 × 2
matrices M and T of (7) can be considered to be
diagonal in this case, thus allowing a description of
the system as four separate scalar waveguides.

m
z

z

µk

1

2

Fig. 7

Two pairs of strings coupled at a bridge.

The ith pair of strings is described by the 2-variable
impedance matrix

Ri =

[

Ri,1 0
0 Ri,2

]

. (65)

The lumped elements forming the bridge are con-
nected in series, so that the driving-point velocity6 u
is the same for the spring, mass, and damper:

u(t) = um(t) = uk(t) = uµ(t) . (66)

Also, the forces provided by the spring, mass, and
damper, add:

p(t) = pm(t) + pk(t) + pµ(t) . (67)

We can derive an expression for the bridge
impedances using the following relations in the

6The symbols for the variables velocity and force have been
chosen to maintain consistency with the analogous acoustical
quantities.
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Laplace-transform domain:

Pk(s) = (k/s)Uk(s)
Pm(s) = msUm(s)
Pµ(s) = µUµ(s) .

(68)

Equations (68) and (67) give the continuous-time
load impedance

RL(s) =
P (s)

U(s)
= m

s2 + sµ/m + k/m

s
. (69)

In order to move to the discrete-time domain, we may
apply the bilinear transform

s← α
1− z−1

1 + z−1
(70)

to (69). The factor α is used to control the compres-
sion of the frequency axis. It may be set to 2/T so
that the discrete-time filter corresponds to integrat-
ing the analog differential equation using the trape-
zoidal rule, or it may be chosen to preserve the reso-
nance frequency.

We obtain

RL(z) =
[

(α2 − αµ/m + k/m)z−2

+ (−2α2 + 2k/m)z−1

+ (α2 + αµ/m + k/m)
] /[

α/m(1− z−2)
]

.

The factor S in the impedance formulation of the
scattering matrix (62) is given by

S(z) =





2
∑

i,j=1

Ri,j + RL(z)





−1

, (71)

which is a rational function of the complex variable
z. The scattering matrix is given by

A = 2S









R1,1 R1,2 R2,1 R2,2

R1,1 R1,2 R2,1 R2,2

R1,1 R1,2 R2,1 R2,2

R1,1 R1,2 R2,1 R2,2









− I , (72)

which can be implemented using a single second-
order filter having transfer function (71).

V. Conclusions

We presented a generalized formulation of digital
waveguide networks derived from a vectorized set
of telegrapher’s equations. Multivariable complex
power was defined, and conditions for “medium pas-
sivity” were presented. Incorporation of losses was

carried out, and applications were discussed. An ef-
ficient class of loss-modeling filters was derived, and
a rule for checking validity of the small-loss assump-
tion was proposed. Finally, the form of the scatter-
ing matrix was derived in the case of a junction of
multivariable waveguides, and an example in musical
acoustics was given.

Appendix

I. Propagation of Spherical Waves (Conical
Tubes)

We have seen how a tract of cylindrical tube is gov-
erned by a partial differential equation such as (7)
and, therefore, it admits exact simulation by means
of a waveguide section. When the tube has a con-
ical profile, the wave equation is no longer (1), but
we can use the equation for propagation of spherical
waves [27]:

1

r2

∂

∂r

(

r2 ∂p(r, t)

∂r

)

=
1

c2

∂2p(r, t)

∂t2
, (73)

where r is the distance from the cone apex.
In the equation (73) we can evidentiate a term in

the first derivative, thus obtaining

∂2p(r, t)

∂r2
+

2

r

∂p(r, t)

∂r
=

1

c2

∂2p(r, t)

∂t2
. (74)

If we recall equation (26) for lossy waveguides, we
find some similarities. Indeed, we are going to show
that, in the scalar case, the media described by (26)
and (74) have structurally similar wave admittances.

Let us put a complex exponential eigensolution
in (73), with an amplitude correction that accounts
for energy conservation in spherical wavefronts. Since
the area of such wavefront is proportional to r2, such
amplitude correction has to be inversely proportional
to r, in such a way that the product intensity (that
is the square of amplitude) by area is constant. The
eigensolution is

p(r, t) =
1

r
est+vr , (75)

where s is the complex temporal frequency, and v
is the complex spatial frequency. By substitution
of (75) in (73) we find the algebraic relation

v = ±
s

c
. (76)

So, even in this case the pressure can be expressed
by the first of (4), where

p+ = 1
r es(t−r/c); p− = 1

r es(t+r/c) . (77)
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Newton’s second law

∂ur

∂t
= −

1

ρ

∂p

∂r
(78)

applied to (77) allows to express the particle velocity
ur as

ur(r, t) =

(

1

rs
∓

1

c

)

1

ρr
es(t±r/c) . (79)

Therefore, the two wave components of the air flow
are given by

u+ = S
(

1
rs + 1

c

)

1
ρr es(t−r/c)

u− = S
(

1
rs −

1
c

)

1
ρr es(t+r/c) ,

(80)

where S is the area of the spherical shell outlined by
the cone at point r.

We can define the two wave admittances

Γ+ = Γ(s) = u+

p+ = G0

(

1 + 1
sL

)

Γ− = −Γ∗(−s∗) = u−

p−
= G0

(

−1 + 1
sL

)

,
(81)

where G0 = S
ρc is the admittance in the degenerate

case of a null tapering angle, and L = r
c is a shunt

reactance accounting for conicity [46]. The wave ad-
mittance for the cone is Γ(s), and Γ∗(−s∗) is its para-
conjugate in the analog domain. If we translate the
equations into the discrete-time domain by bilinear
transformation, we can check the validity of equa-
tions (21) for the case of the cone.

Wave propagation in conical ducts is not lossless,
since R(s) 6= R∗(−s∗). However, the medium is
passive in the sense of section II, since the sum
R(s) + R∗(−s∗) is positive semidefinite along the
imaginary axis.

As compared to the lossy cylindrical tube, the
expression for wave admittance is structurally un-
changed, with the only exception of the sign inversion
in the shunt inductance. This difference is justified
by thinking of the shunt inductance as a representa-
tion of the signal that does not propagate along the
waveguide. In the case of the lossy tube, such sig-
nal is dissipated into heat; in the case of the cone, it
fills the shell that is formed by interfacing a planar
wavefront with a spherical wavefront.

The discrete-time simulation of a length-LR cone
tract having the (left) narrow end at distance r0 from
the apex is depicted in figure 8.
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