Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Symmetric Linear-Phase Filters

As stated at the beginning of this chapter, the impulse response of every causal, linear-phase, FIR filter is symmetric:

$\displaystyle h(n) = h(N-1-n), \quad n=0,1,2,\ldots,N-1.
$

Assume that $ N$ is odd. Then the filter

$\displaystyle h_{\hbox{\tiny zp}}(n) = h\left(n+\frac{N-1}{2}\right), \quad n=-\frac{N-1}{2},\,\ldots\,,\frac{N-1}{2}
$

is a zero-phase filter. Thus, every odd-length linear-phase filter can be expressed as a delay of some zero-phase filter,

$\displaystyle h(n) = h_{\hbox{\tiny zp}}\left(n-\frac{N-1}{2}\right), \quad n=0,1,2,\ldots, N-1.
$

By the shift theorem for z transforms (§6.3), the transfer function of a linear-phase filter is

$\displaystyle H(z) = z^{-\frac{N-1}{2}}H_{\hbox{zp}}(z)
$

and the frequency response is

$\displaystyle H(e^{j\omega T}) = e^{-j\omega \frac{N-1}{2}T}H_{\hbox{zp}}(e^{j\omega T})
$

which is a linear phase term times $ H_{\hbox{zp}}(e^{j\omega T})$ which is real. Since $ H_{\hbox{zp}}(e^{j\omega T})$ can go negative, the phase response is

$\displaystyle \Theta(\omega) =
\left\{\begin{array}{ll}
\displaystyle-\frac{N-1}{2}\omega T, & H_{\hbox{zp}}(e^{j\omega T})\geq 0 \\ [5pt]
\displaystyle-\frac{N-1}{2}\omega T + \pi, & H_{\hbox{zp}}(e^{j\omega T})<0 \\
\end{array} \right..
$

For frequencies $ \omega$ at which $ H_{\hbox{zp}}(e^{j\omega T})$ is nonnegative, the phase delay and group delay of a linear-phase filter are simply half its length:

\begin{displaymath}
\begin{array}{rclrcl}
P(\omega) &\isdef & -\displaystyle\frac{\Theta(\omega)}{\omega} &=& \displaystyle\frac{N-1}{2} T,
\qquad H_{\hbox{zp}}(e^{j\omega T})\geq0\\ [10pt]
D(\omega) &\isdef & -\displaystyle\frac{\partial}{\partial\omega}\Theta(\omega) &=& \displaystyle\frac{N-1}{2} T,
\qquad H_{\hbox{zp}}(e^{j\omega T})\geq0\\
\end{array}\end{displaymath}



Subsections
Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (September 2007 Edition)
Copyright © 2023-09-17 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA