Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Toward a Computational Model

Given:

\begin{eqnarray*}
p_m&=& \hbox{Mouth pressure} \\
p_b^{+}&=& \hbox{Incoming traveling bore pressure}
\end{eqnarray*}

Find:

$\displaystyle p_b^{-}= \hbox{Outgoing traveling bore pressure}
$

such that:

\begin{eqnarray*}
0 &=& u_m+u_b= \frac{p_{\Delta}}{R_m(p_{\Delta})} + \frac{p_b^...
...\mathrm{\Delta}}{=}}& p_m-p_b= p_m- (p_b^{+}+p_b^{-}) \nonumber
\end{eqnarray*}

Solving for $ p_b^{-}$ is not immediate because
$ R_m$ depends on $ p_{\Delta}$ which depends on $ p_b^{-}$.


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download SingleReeds.pdf
Download SingleReeds_2up.pdf
Download SingleReeds_4up.pdf

``Woodwind Models'', by Julius O. Smith III, (From Lecture Overheads, Music 420).
Copyright © 2007-01-08 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]