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Single-Reed Instruments

Schematic Model
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• Main control variable = air pressure applied to reed

• Secondary control variable = reed embouchure

• Pressure waves = natural choice for simulation

• Bell ≈ power-complementary “cross-over” filter:

– Low frequencies reflect (inverted)

– High frequencies transmit

– Cross-over frequency ≈ 1500 Hz for clarinet
(where wavelength ≈ bore diameter)

• Radiation ≈ “Omni” at LF, more directional at HF
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Single-Reed Digital Waveguide Model
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Reed Table

• Bore = bidirectional delay line (losses lumped)

• Bore length = 1/4 wavelength in lowest register

– Bell reflection ≈ -1 at low frequencies

– Mouthpiece reflection ≈ +1

• Reflection filter depends on first few open toneholes

• In a simple implementation, the bore is “cut to a new
length” for each pitch

• Reed = Nonlinear scattering junction

– Reed mass neglected

– Reed table interpolated (usually linear)

– In software, simple “if statement” possible

– Embouchure can be a simple address offset
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Qualitative Description of Single-Reed Oscillation

• Apply pressure at the mouthpiece

• Reed is “biased” in “negative-resistance” region

• High-pressure front travels to open tonehole or bell
where it reflects with a sign inversion

• A “canceling wave” travels back toward mouthpiece

• The canceling wave reflects from the mouthpiece with
no inversion

• A negative-pressure “wake” is left behind

• The reflected-canceling-wave travels back to the open
end where it reflects with inversion

• The negative-pressure throughout bore is canceled by
this wave as it travels to the mouthpiece

• Upon reaching mouthpiece, one period is finished

• One period = four trips across bore length
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Reed Causes Oscillation Growth

• Wave loses energy propagating in bore
(mainly at the open-end reflection)

• The nonlinear reed action must restore this lost energy

• “Power supply” = “dc mouth pressure”
⇒ Reed converts dc to ac

• Reed action “sharpens” pressure transitions

– Reed closure increases reflection coefficient in bore

– As pressure falls in bore, it is amplified by
increasing ρ

– As pressure falls in bore, it is further amplified by
decreasing flow input from the mouth

– As pressure rises in bore, it is amplified by
increasing mouth flow input (although reflection
coefficient decreases)

– Reflection of a positive wave is boosted when the
incoming wave is below a certain level and it is
attenuated above that level

• When the oscillation reaches a very high amplitude, it
is limited on the negative side by the shutting of the
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reed, and on the positive side by the attenuation
described above
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Bernoulli’s Equation

In an ideal inviscid, incompressible flow, we have, by
conservation of energy,

p +
1

2
ρu2 + ρgh = constant

where

p = pressure (Newtons/m2 = kg /(m s2))

u = particle velocity (m/s)

ρ = volume density of air (kg/m3)

g = Newton’s gravitational constant (m/s2)

h = Height of flow’s center-of-mass axis (m)

“Inviscid” = “Frictionless”, “Lossless”

Pressure is Proportional to Kinetic Energy

p =
1

3
ρ

〈

u2
〉

• Average momentum transfer / area / time

• Caused by collisions of gas molecules with boundary

• Proof: See Kinetic Theory of Gases
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Bernoulli Effect

Radiation (turbulent noise)
Pressure recovery
Dissipation (heat)

pm

(um = 0)

u
pm −

1
2ρu2

pm −
1
2ρu2 (in jet)

• pm = “mouth pressure”

• Flow inside “mouth” neglected

• Pressure kinetic energy converts to flow kinetic energy
within channel

• Jet “carries its own pressure” until it dissipates

• Jet dissipation can go to

– heat (now allowing “friction” into the model)

– vortices (angular momentum)

– radiation (sound waves)

– pressure recovery:
(flow kinetic energy −→ pressure kinetic energy)
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Single-Reed Theory

pm

um
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b
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ub

pm
∆
= mouth pressure (constant)

pb
∆
= bore pressure (dynamic)

p∆
∆
= pm − pb

∆
= pressure drop across mouthpiece

um
∆
= resulting flow into mouthpiece

Rm(p∆)
∆
= reed-aperture impedance (measured)

where

ub + um = 0 (by continuity of volume velocity)

um(p∆)
∆
=

p∆

Rm(p∆)
(“Ohm’s law” for the reed)

ub
∆
= u+

b + u−

b =
p+

b − p−b
Rb

, Rb
∆
= bore impedance
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Toward a Computational Model

Given:

pm = Mouth pressure

p+
b = Incoming traveling bore pressure

Find:

p−b = Outgoing traveling bore pressure

such that:

0 = um + ub =
p∆

Rm(p∆)
+

p+
b − p−b
Rb

,

p∆
∆
= pm − pb = pm − (p+

b + p−b )

Solving for p−b is not immediate because
Rm depends on p∆ which depends on p−b .
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Graphical Solution Technique
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Graphically solve:

G(p∆) = p+
∆ − p∆, p+

∆
∆
= pm − 2p+

b

where

G(p∆)
∆
= Rbum(p∆) = Rbp∆/Rm(p∆)

• Introduced by Friedlander and Keller (1953)

• Analogous to finding the “operating point” of a
transistor by intersecting its “operating curve” with
the “load line” determined by the load resistance.

• Outgoing wave is then p−b = pm − p+
b − p∆(p+

∆)
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Scattering Formulation

Solve for p−b to obtain

p−b =
1 − r

1 + r
p+

b +
r

1 + r
pm

= ρp+
b +

1 − ρ

2
pm

=
pm

2
− ρ

p+
∆

2

where

ρ(p∆)
∆
=

1 − r(p∆)

1 + r(p∆)
, r(p∆)

∆
=

Rb

Rm(p∆)

ρ(p∆) = signal-dependent reflection coefficient.

In practice, Rm ≫ Rb ⇒ r ≈ 0, ρ ≈ 1
(mouthpiece looks largely like a closed end)
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For Faster Real-Time Computation

Pre-solve the graphical intersection and store the
result in a look-up table

Let h denote half-pressure p/2. Then

p−b = −ρ(p∆) · h+
∆

Subtracting both sides from p+
b and solving for ρ gives

ρ(p∆) =
p∆

h+
∆

− 1

Now, for each h+
∆ = −p+

b , find p∆ graphically, and store
the resulting reflection coefficient ρ(p∆) as a function of
h+

∆:

ρ̂(h+
∆) = ρ(p∆(h+

∆))

Then the real-time reed computation reduces simply to

p−b = −ρ̂(h+
∆) · h+

∆

This is the form chosen for implementation above
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Table-Reduced Reed Reflection Coefficient
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Reed Table

• Control variable = mouth half-pressure

• h+
∆ = −p+

b computed from incoming bore pressure by
a subtraction

• Table is indexed by h+
∆

• Result of lookup is multiplied by h+
∆

• Result of multiplication is subtracted from

• Total reed cost = two subtractions, one multiply, and
one table lookup per sample
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Simple Piecewise-Linear Reed Table

Total Reflection

h∆
+ 1-1 0 hc

∆

( )ρ̂ h∆
+

0

1

Reed
Closure

Reed
Blown
Shut

Inhale Exhale

Reed
Open

Reed
at

Rest

Total
Absorption

(Non-Physical)

ρ̂(h+
∆) =

{

1 − m(hc
∆ − h+

∆), −1 ≤ h+
∆ < hc

∆

1, hc
∆ ≤ h+

∆ ≤ 1

• Corner point hc
∆ = smallest pressure difference giving

reed closure

• In fixed-point, h+
∆

∆
= pm/2 − p+

b is confined to [−1, 1)

• Embouchure and reed-stiffness set by hc
∆ and slope m

[m = 1/(hc
∆ + 1) in the figure]

• Zero at maximum negative pressure h+
∆ = −1 is not

physical but is practical for inhibiting overflow

• A brighter tone is obtained by increasing the curvature

as the reed begins to open [E.g., ρ̂k(h+
∆), for k ≫ 1]
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Further Details

• Input mouth pressure is summed with a small amount
of white noise corresponding to turbulence, e.g., 0.1%
plus more during attacks

• Turbulence level and spectral shape should be
computed automatically as a function of pressure
drop p∆ and reed opening geometry (research topic)

• Simple reflection filter:

H(z) =
1 + a1(t)

1 + a1(t)z−1

where a1(t) = v(t) − 0.642, v(t) = Av sin(2πfvt),
Av = vibrato amplitude (e.g., 0.03), and
fv = vibrato frequency (e.g., 5 Hz)

• Further loop filtering occurs as a result of using a
linearly interpolated delay line for the bore

• Only one (double length) delay line is really used in
typical implementations

• To avoid finger-hole models, legato note transitions
can be managed using two delay line taps and
cross-fading from one to the other during a transition
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Alternative Reed Models

• A direct signal lookup, though requiring much higher
resolution, would eliminate the multiply associated
with the scattering coefficient

• Coefficient tables can be quantized more heavily in
address and word length than direct lookup of a signal
value such as p∆(p+

∆)

• Piecewise polynomial approximations are also used

Software

clarinet.cpp in the Synthesis Toolkit (STK):

http://ccrma.stanford.edu/CCRMA/Software/STK/
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