Outline

- Single-Reed Instruments
 - Schematic Physical Model
 - Digital Waveguide Model
- Bernoulli Effect
- Single-Reed Theory
- Single-Reed Computation Models

Single-Reed Instruments

Schematic Model

- Main control variable = air pressure applied to reed
- Secondary control variable = reed embouchure
- Pressure waves = natural choice for simulation
- Bell \(\approx \) power-complementary “cross-over” filter:
 - Low frequencies reflect (inverted)
 - High frequencies transmit
 - Cross-over frequency \(\approx 1500 \text{ Hz} \) for clarinet
 (where wavelength \(\approx \) bore diameter)
- Radiation \(\approx \) “Omni” at LF, more directional at HF
Single-Reed Digital Waveguide Model

- Bore = bidirectional delay line (losses lumped)
- Bore length = 1/4 wavelength in lowest register
 - Bell reflection ≈ -1 at low frequencies
 - Mouthpiece reflection ≈ +1
- Reflection filter depends on first few open toneholes
- In a simple implementation, the bore is “cut to a new length” for each pitch
- Reed = Nonlinear scattering junction
 - Reed mass neglected
 - Reed table interpolated (usually linear)
 - In software, simple “if statement” possible
 - Embouchure can be a simple address offset

Qualitative Description of Single-Reed Oscillation

- Apply pressure at the mouthpiece
- Reed is “biased” in “negative-resistance” region
- High-pressure front travels to open tonehole or bell where it reflects with a sign inversion
- A “canceling wave” travels back toward mouthpiece
- The canceling wave reflects from the mouthpiece with no inversion
- A negative-pressure “wake” is left behind
- The reflected-canceling-wave travels back to the open end where it reflects with inversion
- The negative-pressure throughout bore is canceled by this wave as it travels to the mouthpiece
- Upon reaching mouthpiece, one period is finished
- One period = four trips across bore length
Reed Causes Oscillation Growth

- Wave loses energy propagating in bore (mainly at the open-end reflection)
- The nonlinear reed action must restore this lost energy
- “Power supply” = “dc mouth pressure”
 \[\Rightarrow \text{Reed converts dc to ac} \]
- Reed action “sharpens” pressure transitions
 - Reed closure increases reflection coefficient in bore
 - As pressure falls in bore, it is amplified by increasing \(\rho \)
 - As pressure falls in bore, it is further amplified by decreasing flow input from the mouth
 - As pressure rises in bore, it is amplified by increasing mouth flow input (although reflection coefficient decreases)
 - Reflection of a positive wave is boosted when the incoming wave is below a certain level and it is attenuated above that level
- When the oscillation reaches a very high amplitude, it is limited on the negative side by the shutting of the reed, and on the positive side by the attenuation described above
Bernoulli’s Equation

In an ideal *inviscid, incompressible flow*, we have, by conservation of energy,

\[p + \frac{1}{2} \rho u^2 + \rho gh = \text{constant} \]

where

- \(p \) = pressure (Newtons/m\(^2\) = kg/(m s\(^2\))
- \(u \) = particle velocity (m/s)
- \(\rho \) = volume density of air (kg/m\(^3\))
- \(g \) = Newton’s gravitational constant (m/s\(^2\))
- \(h \) = Height of flow’s center-of-mass axis (m)

“*Inviscid*” = “Frictionless”, “Lossless”

Pressure is Proportional to Kinetic Energy

\[p = \frac{1}{3} \rho \langle u^2 \rangle \]

- *Average momentum transfer / area / time*
- Caused by collisions of gas molecules with boundary
- Proof: See *Kinetic Theory of Gases*

Bernoulli Effect

- \(p_m \) = “mouth pressure”
- Flow inside “mouth” neglected
- Pressure kinetic energy converts to flow kinetic energy within channel
- Jet “carries its own pressure” until it dissipates
- Jet dissipation can go to
 - heat (now allowing “friction” into the model)
 - vortices (angular momentum)
 - radiation (sound waves)
 - pressure recovery:
 (flow kinetic energy \(\rightarrow \) pressure kinetic energy)
Single-Reed Theory

\[p_m \triangleq \text{mouth pressure (constant)} \]
\[p_b \triangleq \text{bore pressure (dynamic)} \]
\[p_{\Delta} \triangleq p_m - p_b \triangleq \text{pressure drop across mouthpiece} \]
\[u_m \triangleq \text{resulting flow into mouthpiece} \]
\[R_m(p_{\Delta}) \triangleq \text{reed-aperture impedance (measured)} \]

where

\[u_b + u_m = 0 \quad \text{(by continuity of volume velocity)} \]
\[u_m(p_{\Delta}) \triangleq \frac{p_{\Delta}}{R_m(p_{\Delta})} \quad \text{("Ohm’s law" for the reed)} \]
\[u_b \triangleq u_b^+ + u_b^- = \frac{p_b^+ - p_b^-}{R_b}, \quad R_b \triangleq \text{bore impedance} \]

Toward a Computational Model

Given:

\[p_m = \text{Mouth pressure} \]
\[p_b^+ = \text{Incoming traveling bore pressure} \]

Find:

\[p_b^- = \text{Outgoing traveling bore pressure} \]

such that:

\[0 = u_m + u_b = \frac{p_{\Delta}}{R_m(p_{\Delta})} + \frac{p_b^+ - p_b^-}{R_b}, \]
\[p_{\Delta} \triangleq p_m - p_b = p_m - (p_b^+ + p_b^-) \]

Solving for \(p_b^- \) is not immediate because \(R_m \) depends on \(p_{\Delta} \) which depends on \(p_b^- \).
Graphical Solution Technique

Graphically solve:

\[G(p_\Delta) = p_\Delta^+ - p_\Delta, \quad p_\Delta^+ = p_m - 2p_b^+ \]

where

\[G(p_\Delta) \triangleq R_b\mu_m(p_\Delta) = R_b p_\Delta / R_m(p_\Delta) \]

- Introduced by Friedlander and Keller (1953)
- Analogous to finding the “operating point” of a transistor by intersecting its “operating curve” with the “load line” determined by the load resistance.
- Outgoing wave is then \(p_b^- = p_m - p_b^+ - p_\Delta(p_\Delta^+) \)

Scattering Formulation

Solve for \(p_b^- \) to obtain

\[p_b^- = \frac{1 - r}{1 + r} p_b^+ + \frac{r}{1 + r} p_m \]
\[= \rho p_b^+ + \frac{1 - \rho}{2} p_m \]
\[= \frac{p_m}{2} - \rho \frac{p_\Delta^+}{2} \]

where

\[\rho(p_\Delta) \triangleq \frac{1 - r(p_\Delta)}{1 + r(p_\Delta)}, \quad r(p_\Delta) \triangleq \frac{R_b}{R_m(p_\Delta)} \]

\[\rho(p_\Delta) = \text{signal-dependent reflection coefficient.} \]

In practice, \(R_m \gg R_b \Rightarrow r \approx 0, \rho \approx 1 \)

(mouthpiece looks largely like a closed end)
For Faster Real-Time Computation

Pre-solve the graphical intersection and store the result in a look-up table.

Let h denote half-pressure $p/2$. Then

$$p_b^+ = -\rho(p_\Delta) \cdot h_\Delta^+$$

Subtracting both sides from p_b^+ and solving for ρ gives

$$\rho(p_\Delta) = \frac{p_\Delta}{h_\Delta^+} - 1$$

Now, for each $h_\Delta^+ = -p_b^+$, find p_Δ graphically, and store the resulting reflection coefficient $\rho(p_\Delta)$ as a function of h_Δ^+:

$$\hat{\rho}(h_\Delta^+) = \rho(p_\Delta(h_\Delta^+))$$

Then the real-time reed computation reduces simply to

$$p_b^- = -\hat{\rho}(h_\Delta^+) \cdot h_\Delta^+$$

This is the form chosen for implementation above.

Table-Reduced Reed Reflection Coefficient

- Control variable = mouth half-pressure
- $h_\Delta^+ = -p_b^+$ computed from incoming bore pressure by a subtraction
- Table is indexed by h_Δ^+
- Result of lookup is multiplied by h_Δ^+
- Result of multiplication is subtracted from
- Total reed cost = two subtractions, one multiply, and one table lookup per sample
Simple Piecewise-Linear Reed Table

Further Details

- Input mouth pressure is summed with a small amount of white noise corresponding to turbulence, e.g., 0.1% plus more during attacks
- Turbulence level and spectral shape should be computed automatically as a function of pressure drop p_Δ and reed opening geometry (research topic)
- Simple reflection filter:

$$H(z) = \frac{1 + a_1(t)}{1 + a_1(t)z^{-1}}$$

where $a_1(t) = v(t) - 0.642$, $v(t) = A_v \sin(2\pi f_v t)$, $A_v =$ vibrato amplitude (e.g., 0.03), and $f_v =$ vibrato frequency (e.g., 5 Hz)
- Further loop filtering occurs as a result of using a linearly interpolated delay line for the bore
- Only one (double length) delay line is really used in typical implementations
- To avoid finger-hole models, legato note transitions can be managed using two delay line taps and cross-fading from one to the other during a transition

\[\hat{\rho}(h_\Delta^+) = \begin{cases} 1 - m(h_c^+ - h_\Delta^+), & -1 \leq h_\Delta^+ < h_c^+ \\ 1, & h_c^+ \leq h_\Delta^+ \leq 1 \end{cases} \]

- Corner point $h_c^+ = $ smallest pressure difference giving reed closure
- In fixed-point, $h_\Delta^+ \overset{\Delta}{=} p_m/2 - p_b^+$ is confined to $[-1, 1)$
- Embouchure and reed-stiffness set by h_c^+ and slope m $[m = 1/(h_c^+ + 1)$ in the figure$]$
- Zero at maximum negative pressure $h_\Delta^+ = -1$ is not physical but is practical for inhibiting overflow
- A brighter tone is obtained by increasing the curvature as the reed begins to open [E.g., $\hat{\rho}^k(h_\Delta^+)$, for $k \gg 1$]
Alternative Reed Models

- A direct signal lookup, though requiring much higher resolution, would eliminate the multiply associated with the scattering coefficient
- Coefficient tables can be quantized more heavily in address and word length than direct lookup of a signal value such as $p_{\Delta}(p_{\Delta}^+)$
- Piecewise polynomial approximations are also used

Software

clarinet.cpp in the Synthesis Toolkit (STK):

http://ccrma.stanford.edu/CCRMA/Software/STK/